Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the equation [tex]\(\log(2x - 100) = 3\)[/tex], we can follow these steps:
1. Understand the logarithmic equation: The given equation is in logarithmic form, [tex]\(\log(2x - 100) = 3\)[/tex]. To solve for [tex]\(x\)[/tex], we'll convert this logarithmic form into its exponential form.
2. Convert to exponential form: Recall that [tex]\(\log_b(a) = c\)[/tex] is equivalent to [tex]\(a = b^c\)[/tex]. In this problem, the base of the logarithm is assumed to be 10 (common logarithm). Thus, we can write:
[tex]\[ 2x - 100 = 10^3 \][/tex]
3. Simplify the exponential equation: We know that [tex]\(10^3 = 1000\)[/tex]. Substituting this into the equation, we get:
[tex]\[ 2x - 100 = 1000 \][/tex]
4. Solve for [tex]\(x\)[/tex]:
- Add 100 to both sides to isolate the term with [tex]\(x\)[/tex]:
[tex]\[ 2x = 1000 + 100 \][/tex]
- Simplify the right-hand side:
[tex]\[ 2x = 1100 \][/tex]
- Divide both sides by 2 to solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{1100}{2} = 550 \][/tex]
Therefore, the solution to the equation [tex]\(\log(2x - 100) = 3\)[/tex] is [tex]\(x = 550\)[/tex].
The correct answer is:
B. [tex]\(x = 550\)[/tex]
1. Understand the logarithmic equation: The given equation is in logarithmic form, [tex]\(\log(2x - 100) = 3\)[/tex]. To solve for [tex]\(x\)[/tex], we'll convert this logarithmic form into its exponential form.
2. Convert to exponential form: Recall that [tex]\(\log_b(a) = c\)[/tex] is equivalent to [tex]\(a = b^c\)[/tex]. In this problem, the base of the logarithm is assumed to be 10 (common logarithm). Thus, we can write:
[tex]\[ 2x - 100 = 10^3 \][/tex]
3. Simplify the exponential equation: We know that [tex]\(10^3 = 1000\)[/tex]. Substituting this into the equation, we get:
[tex]\[ 2x - 100 = 1000 \][/tex]
4. Solve for [tex]\(x\)[/tex]:
- Add 100 to both sides to isolate the term with [tex]\(x\)[/tex]:
[tex]\[ 2x = 1000 + 100 \][/tex]
- Simplify the right-hand side:
[tex]\[ 2x = 1100 \][/tex]
- Divide both sides by 2 to solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{1100}{2} = 550 \][/tex]
Therefore, the solution to the equation [tex]\(\log(2x - 100) = 3\)[/tex] is [tex]\(x = 550\)[/tex].
The correct answer is:
B. [tex]\(x = 550\)[/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.