Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's solve the following equation step-by-step:
[tex]\[ \log (x-3) + \log x = 1 \][/tex]
1. Combine the logarithms using the property [tex]\(\log a + \log b = \log (ab)\)[/tex]:
[tex]\[ \log ((x-3)x) = 1 \][/tex]
2. Exponentiate both sides to eliminate the logarithm:
[tex]\[ (x-3)x = 10^1 \][/tex]
[tex]\[ x^2 - 3x = 10 \][/tex]
3. Rearrange this quadratic equation to standard form:
[tex]\[ x^2 - 3x - 10 = 0 \][/tex]
4. Solve the quadratic equation using the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{b^2 -4ac}}{2a}\)[/tex] where [tex]\(a = 1\)[/tex], [tex]\(b = -3\)[/tex], and [tex]\(c = -10\)[/tex]:
[tex]\[ x = \frac{3 \pm \sqrt{9 + 40}}{2} \][/tex]
[tex]\[ x = \frac{3 \pm \sqrt{49}}{2} \][/tex]
[tex]\[ x = \frac{3 \pm 7}{2} \][/tex]
5. Find the roots:
[tex]\[ x = \frac{3 + 7}{2} = 5 \][/tex]
[tex]\[ x = \frac{3 - 7}{2} = -2 \][/tex]
6. Identify extraneous solutions:
Since logarithms are only defined for positive arguments, we must check the solutions in the original equation:
- For [tex]\(x = 5\)[/tex]:
[tex]\[ \log(5-3) + \log(5) = \log(2) + \log(5) = \log(10) = 1 \][/tex]
This works.
- For [tex]\(x = -2\)[/tex]:
- [tex]\(\log(-2 - 3)\)[/tex] and [tex]\(\log(-2)\)[/tex] are not defined since the arguments to the logarithms are negative.
So, [tex]\(x = -2\)[/tex] is an extraneous solution.
7. Conclusion:
Of Janet's two solutions, only [tex]\(x=5\)[/tex] is correct because [tex]\(x=-2\)[/tex] is an extraneous solution.
Therefore, the correct statement to complete:
Of Janet's two solutions, only [tex]\(x = 5\)[/tex] is (correct because \ [tex]\(\ \text{\_) [x=5] (correct because both x=-2 and x=5 are valld solutions, both x=-2 and x=5 are extraneous solutions, x=5 is an extraneous solution, x=-2 is an extraneous solution) The correct answers are: Of Janet's two solutions, only \(x=5\)[/tex] is correct because [tex]\(x=-2\)[/tex] is an extraneous solution.
[tex]\[ \log (x-3) + \log x = 1 \][/tex]
1. Combine the logarithms using the property [tex]\(\log a + \log b = \log (ab)\)[/tex]:
[tex]\[ \log ((x-3)x) = 1 \][/tex]
2. Exponentiate both sides to eliminate the logarithm:
[tex]\[ (x-3)x = 10^1 \][/tex]
[tex]\[ x^2 - 3x = 10 \][/tex]
3. Rearrange this quadratic equation to standard form:
[tex]\[ x^2 - 3x - 10 = 0 \][/tex]
4. Solve the quadratic equation using the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{b^2 -4ac}}{2a}\)[/tex] where [tex]\(a = 1\)[/tex], [tex]\(b = -3\)[/tex], and [tex]\(c = -10\)[/tex]:
[tex]\[ x = \frac{3 \pm \sqrt{9 + 40}}{2} \][/tex]
[tex]\[ x = \frac{3 \pm \sqrt{49}}{2} \][/tex]
[tex]\[ x = \frac{3 \pm 7}{2} \][/tex]
5. Find the roots:
[tex]\[ x = \frac{3 + 7}{2} = 5 \][/tex]
[tex]\[ x = \frac{3 - 7}{2} = -2 \][/tex]
6. Identify extraneous solutions:
Since logarithms are only defined for positive arguments, we must check the solutions in the original equation:
- For [tex]\(x = 5\)[/tex]:
[tex]\[ \log(5-3) + \log(5) = \log(2) + \log(5) = \log(10) = 1 \][/tex]
This works.
- For [tex]\(x = -2\)[/tex]:
- [tex]\(\log(-2 - 3)\)[/tex] and [tex]\(\log(-2)\)[/tex] are not defined since the arguments to the logarithms are negative.
So, [tex]\(x = -2\)[/tex] is an extraneous solution.
7. Conclusion:
Of Janet's two solutions, only [tex]\(x=5\)[/tex] is correct because [tex]\(x=-2\)[/tex] is an extraneous solution.
Therefore, the correct statement to complete:
Of Janet's two solutions, only [tex]\(x = 5\)[/tex] is (correct because \ [tex]\(\ \text{\_) [x=5] (correct because both x=-2 and x=5 are valld solutions, both x=-2 and x=5 are extraneous solutions, x=5 is an extraneous solution, x=-2 is an extraneous solution) The correct answers are: Of Janet's two solutions, only \(x=5\)[/tex] is correct because [tex]\(x=-2\)[/tex] is an extraneous solution.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.