Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's solve the following equation step-by-step:
[tex]\[ \log (x-3) + \log x = 1 \][/tex]
1. Combine the logarithms using the property [tex]\(\log a + \log b = \log (ab)\)[/tex]:
[tex]\[ \log ((x-3)x) = 1 \][/tex]
2. Exponentiate both sides to eliminate the logarithm:
[tex]\[ (x-3)x = 10^1 \][/tex]
[tex]\[ x^2 - 3x = 10 \][/tex]
3. Rearrange this quadratic equation to standard form:
[tex]\[ x^2 - 3x - 10 = 0 \][/tex]
4. Solve the quadratic equation using the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{b^2 -4ac}}{2a}\)[/tex] where [tex]\(a = 1\)[/tex], [tex]\(b = -3\)[/tex], and [tex]\(c = -10\)[/tex]:
[tex]\[ x = \frac{3 \pm \sqrt{9 + 40}}{2} \][/tex]
[tex]\[ x = \frac{3 \pm \sqrt{49}}{2} \][/tex]
[tex]\[ x = \frac{3 \pm 7}{2} \][/tex]
5. Find the roots:
[tex]\[ x = \frac{3 + 7}{2} = 5 \][/tex]
[tex]\[ x = \frac{3 - 7}{2} = -2 \][/tex]
6. Identify extraneous solutions:
Since logarithms are only defined for positive arguments, we must check the solutions in the original equation:
- For [tex]\(x = 5\)[/tex]:
[tex]\[ \log(5-3) + \log(5) = \log(2) + \log(5) = \log(10) = 1 \][/tex]
This works.
- For [tex]\(x = -2\)[/tex]:
- [tex]\(\log(-2 - 3)\)[/tex] and [tex]\(\log(-2)\)[/tex] are not defined since the arguments to the logarithms are negative.
So, [tex]\(x = -2\)[/tex] is an extraneous solution.
7. Conclusion:
Of Janet's two solutions, only [tex]\(x=5\)[/tex] is correct because [tex]\(x=-2\)[/tex] is an extraneous solution.
Therefore, the correct statement to complete:
Of Janet's two solutions, only [tex]\(x = 5\)[/tex] is (correct because \ [tex]\(\ \text{\_) [x=5] (correct because both x=-2 and x=5 are valld solutions, both x=-2 and x=5 are extraneous solutions, x=5 is an extraneous solution, x=-2 is an extraneous solution) The correct answers are: Of Janet's two solutions, only \(x=5\)[/tex] is correct because [tex]\(x=-2\)[/tex] is an extraneous solution.
[tex]\[ \log (x-3) + \log x = 1 \][/tex]
1. Combine the logarithms using the property [tex]\(\log a + \log b = \log (ab)\)[/tex]:
[tex]\[ \log ((x-3)x) = 1 \][/tex]
2. Exponentiate both sides to eliminate the logarithm:
[tex]\[ (x-3)x = 10^1 \][/tex]
[tex]\[ x^2 - 3x = 10 \][/tex]
3. Rearrange this quadratic equation to standard form:
[tex]\[ x^2 - 3x - 10 = 0 \][/tex]
4. Solve the quadratic equation using the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{b^2 -4ac}}{2a}\)[/tex] where [tex]\(a = 1\)[/tex], [tex]\(b = -3\)[/tex], and [tex]\(c = -10\)[/tex]:
[tex]\[ x = \frac{3 \pm \sqrt{9 + 40}}{2} \][/tex]
[tex]\[ x = \frac{3 \pm \sqrt{49}}{2} \][/tex]
[tex]\[ x = \frac{3 \pm 7}{2} \][/tex]
5. Find the roots:
[tex]\[ x = \frac{3 + 7}{2} = 5 \][/tex]
[tex]\[ x = \frac{3 - 7}{2} = -2 \][/tex]
6. Identify extraneous solutions:
Since logarithms are only defined for positive arguments, we must check the solutions in the original equation:
- For [tex]\(x = 5\)[/tex]:
[tex]\[ \log(5-3) + \log(5) = \log(2) + \log(5) = \log(10) = 1 \][/tex]
This works.
- For [tex]\(x = -2\)[/tex]:
- [tex]\(\log(-2 - 3)\)[/tex] and [tex]\(\log(-2)\)[/tex] are not defined since the arguments to the logarithms are negative.
So, [tex]\(x = -2\)[/tex] is an extraneous solution.
7. Conclusion:
Of Janet's two solutions, only [tex]\(x=5\)[/tex] is correct because [tex]\(x=-2\)[/tex] is an extraneous solution.
Therefore, the correct statement to complete:
Of Janet's two solutions, only [tex]\(x = 5\)[/tex] is (correct because \ [tex]\(\ \text{\_) [x=5] (correct because both x=-2 and x=5 are valld solutions, both x=-2 and x=5 are extraneous solutions, x=5 is an extraneous solution, x=-2 is an extraneous solution) The correct answers are: Of Janet's two solutions, only \(x=5\)[/tex] is correct because [tex]\(x=-2\)[/tex] is an extraneous solution.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.