Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Ask your questions and receive precise answers from experienced professionals across different disciplines. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Select the correct answer from each drop-down menu.

Janet solves this equation:
[tex]\[ \log (x-3) + \log x = 1 \][/tex]

She finds two solutions, [tex]\( x = 5 \)[/tex] and [tex]\( x = -2 \)[/tex].

Complete this statement about Janet's solutions:
Of Janet's two solutions, only [tex]\( x = 5 \)[/tex] is (correct because):

A. both [tex]\( x = -2 \)[/tex] and [tex]\( x = 5 \)[/tex] are valid solutions
B. both [tex]\( x = -2 \)[/tex] and [tex]\( x = 5 \)[/tex] are extraneous solutions
C. [tex]\( x = 5 \)[/tex] is an extraneous solution
D. [tex]\( x = -2 \)[/tex] is an extraneous solution


Sagot :

Let's solve the following equation step-by-step:
[tex]\[ \log (x-3) + \log x = 1 \][/tex]

1. Combine the logarithms using the property [tex]\(\log a + \log b = \log (ab)\)[/tex]:
[tex]\[ \log ((x-3)x) = 1 \][/tex]

2. Exponentiate both sides to eliminate the logarithm:
[tex]\[ (x-3)x = 10^1 \][/tex]
[tex]\[ x^2 - 3x = 10 \][/tex]

3. Rearrange this quadratic equation to standard form:
[tex]\[ x^2 - 3x - 10 = 0 \][/tex]

4. Solve the quadratic equation using the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{b^2 -4ac}}{2a}\)[/tex] where [tex]\(a = 1\)[/tex], [tex]\(b = -3\)[/tex], and [tex]\(c = -10\)[/tex]:
[tex]\[ x = \frac{3 \pm \sqrt{9 + 40}}{2} \][/tex]
[tex]\[ x = \frac{3 \pm \sqrt{49}}{2} \][/tex]
[tex]\[ x = \frac{3 \pm 7}{2} \][/tex]

5. Find the roots:
[tex]\[ x = \frac{3 + 7}{2} = 5 \][/tex]
[tex]\[ x = \frac{3 - 7}{2} = -2 \][/tex]

6. Identify extraneous solutions:
Since logarithms are only defined for positive arguments, we must check the solutions in the original equation:
- For [tex]\(x = 5\)[/tex]:
[tex]\[ \log(5-3) + \log(5) = \log(2) + \log(5) = \log(10) = 1 \][/tex]
This works.
- For [tex]\(x = -2\)[/tex]:
- [tex]\(\log(-2 - 3)\)[/tex] and [tex]\(\log(-2)\)[/tex] are not defined since the arguments to the logarithms are negative.

So, [tex]\(x = -2\)[/tex] is an extraneous solution.

7. Conclusion:
Of Janet's two solutions, only [tex]\(x=5\)[/tex] is correct because [tex]\(x=-2\)[/tex] is an extraneous solution.

Therefore, the correct statement to complete:

Of Janet's two solutions, only [tex]\(x = 5\)[/tex] is (correct because \ [tex]\(\ \text{\_) [x=5] (correct because both x=-2 and x=5 are valld solutions, both x=-2 and x=5 are extraneous solutions, x=5 is an extraneous solution, x=-2 is an extraneous solution) The correct answers are: Of Janet's two solutions, only \(x=5\)[/tex] is correct because [tex]\(x=-2\)[/tex] is an extraneous solution.