At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine which function is increasing on the interval [tex]\((-\infty, \infty)\)[/tex], let's analyze each one:
A. [tex]\( g(x) = -4(2^x) \)[/tex]
- The exponential function [tex]\(2^x\)[/tex] is increasing because as [tex]\(x\)[/tex] gets larger, [tex]\(2^x\)[/tex] also gets larger.
- However, multiplying by [tex]\(-4\)[/tex] changes the sign of the function, causing it to decrease as [tex]\(x\)[/tex] increases.
- Thus, [tex]\(g(x)\)[/tex] is not increasing on the interval [tex]\((-\infty, \infty)\)[/tex].
B. [tex]\( h(x) = 2^x - 1 \)[/tex]
- The exponential function [tex]\(2^x\)[/tex] is increasing because as [tex]\(x\)[/tex] gets larger, [tex]\(2^x\)[/tex] also gets larger.
- Subtracting a constant [tex]\(1\)[/tex] will shift the entire function down, but the overall trend of the function remains increasing.
- So, [tex]\(h(x)\)[/tex] is increasing on the interval [tex]\((-\infty, \infty)\)[/tex].
C. [tex]\( j(x) = x^2 + 8x + 1 \)[/tex]
- This is a quadratic function of the form [tex]\(j(x) = ax^2 + bx + c\)[/tex], where [tex]\(a = 1\)[/tex] (positive).
- Quadratic functions with a positive leading coefficient [tex]\(a\)[/tex] open upwards.
- They have a minimum point (vertex), causing them to decrease before the vertex and increase after the vertex.
- Thus, [tex]\(j(x)\)[/tex] is not increasing over the entire interval [tex]\((-\infty, \infty)\)[/tex].
D. [tex]\( f(x) = -3x + 7 \)[/tex]
- This is a linear function of the form [tex]\(f(x) = mx + b\)[/tex], where [tex]\(m = -3\)[/tex] (negative slope).
- A negative slope means the function decreases as [tex]\(x\)[/tex] increases.
- Therefore, [tex]\(f(x)\)[/tex] is not increasing on the interval [tex]\((-\infty, \infty)\)[/tex].
Therefore, the correct answer is:
B. [tex]\( h(x) = 2^x - 1 \)[/tex]
This is the only function among the given options that is increasing on the interval [tex]\((-\infty, \infty)\)[/tex].
A. [tex]\( g(x) = -4(2^x) \)[/tex]
- The exponential function [tex]\(2^x\)[/tex] is increasing because as [tex]\(x\)[/tex] gets larger, [tex]\(2^x\)[/tex] also gets larger.
- However, multiplying by [tex]\(-4\)[/tex] changes the sign of the function, causing it to decrease as [tex]\(x\)[/tex] increases.
- Thus, [tex]\(g(x)\)[/tex] is not increasing on the interval [tex]\((-\infty, \infty)\)[/tex].
B. [tex]\( h(x) = 2^x - 1 \)[/tex]
- The exponential function [tex]\(2^x\)[/tex] is increasing because as [tex]\(x\)[/tex] gets larger, [tex]\(2^x\)[/tex] also gets larger.
- Subtracting a constant [tex]\(1\)[/tex] will shift the entire function down, but the overall trend of the function remains increasing.
- So, [tex]\(h(x)\)[/tex] is increasing on the interval [tex]\((-\infty, \infty)\)[/tex].
C. [tex]\( j(x) = x^2 + 8x + 1 \)[/tex]
- This is a quadratic function of the form [tex]\(j(x) = ax^2 + bx + c\)[/tex], where [tex]\(a = 1\)[/tex] (positive).
- Quadratic functions with a positive leading coefficient [tex]\(a\)[/tex] open upwards.
- They have a minimum point (vertex), causing them to decrease before the vertex and increase after the vertex.
- Thus, [tex]\(j(x)\)[/tex] is not increasing over the entire interval [tex]\((-\infty, \infty)\)[/tex].
D. [tex]\( f(x) = -3x + 7 \)[/tex]
- This is a linear function of the form [tex]\(f(x) = mx + b\)[/tex], where [tex]\(m = -3\)[/tex] (negative slope).
- A negative slope means the function decreases as [tex]\(x\)[/tex] increases.
- Therefore, [tex]\(f(x)\)[/tex] is not increasing on the interval [tex]\((-\infty, \infty)\)[/tex].
Therefore, the correct answer is:
B. [tex]\( h(x) = 2^x - 1 \)[/tex]
This is the only function among the given options that is increasing on the interval [tex]\((-\infty, \infty)\)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.