Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the value of [tex]\(\sec \theta\)[/tex] given [tex]\(\tan \theta = -\frac{4}{3}\)[/tex] and [tex]\(\frac{\pi}{2} < \theta < \pi\)[/tex], let’s follow these steps:
1. Understand the given information:
- [tex]\(\tan \theta = -\frac{4}{3}\)[/tex]
- [tex]\(\theta\)[/tex] is in the second quadrant, where the angle lies between [tex]\(\frac{\pi}{2}\)[/tex] and [tex]\(\pi\)[/tex].
2. Identify the relationship between tangent and secant:
We know the trigonometric identity:
[tex]\[ \sec^2 \theta = 1 + \tan^2 \theta \][/tex]
3. Calculate [tex]\(\sec^2 \theta\)[/tex]:
- Given [tex]\(\tan \theta = -\frac{4}{3}\)[/tex],
[tex]\[ \tan^2 \theta = \left( -\frac{4}{3} \right)^2 = \frac{16}{9} \][/tex]
- Apply the identity:
[tex]\[ \sec^2 \theta = 1 + \frac{16}{9} = \frac{9}{9} + \frac{16}{9} = \frac{25}{9} \][/tex]
4. Determine [tex]\(\sec \theta\)[/tex]:
- Take the square root of both sides to solve for [tex]\(\sec \theta\)[/tex]:
[tex]\[ \sec \theta = \pm \sqrt{\frac{25}{9}} = \pm \frac{5}{3} \][/tex]
5. Consider the quadrant:
Since [tex]\(\theta\)[/tex] is in the second quadrant ([tex]\(\frac{\pi}{2} < \theta < \pi\)[/tex]), and we know that in the second quadrant, the cosine function is negative, [tex]\(\sec \theta\)[/tex] (which is the reciprocal of [tex]\(\cos \theta\)[/tex]) must also be negative.
6. Select the correct value:
[tex]\[ \sec \theta = -\frac{5}{3} \][/tex]
Thus, the correct value of [tex]\(\sec \theta\)[/tex] is [tex]\(\boxed{-\frac{5}{3}}\)[/tex].
1. Understand the given information:
- [tex]\(\tan \theta = -\frac{4}{3}\)[/tex]
- [tex]\(\theta\)[/tex] is in the second quadrant, where the angle lies between [tex]\(\frac{\pi}{2}\)[/tex] and [tex]\(\pi\)[/tex].
2. Identify the relationship between tangent and secant:
We know the trigonometric identity:
[tex]\[ \sec^2 \theta = 1 + \tan^2 \theta \][/tex]
3. Calculate [tex]\(\sec^2 \theta\)[/tex]:
- Given [tex]\(\tan \theta = -\frac{4}{3}\)[/tex],
[tex]\[ \tan^2 \theta = \left( -\frac{4}{3} \right)^2 = \frac{16}{9} \][/tex]
- Apply the identity:
[tex]\[ \sec^2 \theta = 1 + \frac{16}{9} = \frac{9}{9} + \frac{16}{9} = \frac{25}{9} \][/tex]
4. Determine [tex]\(\sec \theta\)[/tex]:
- Take the square root of both sides to solve for [tex]\(\sec \theta\)[/tex]:
[tex]\[ \sec \theta = \pm \sqrt{\frac{25}{9}} = \pm \frac{5}{3} \][/tex]
5. Consider the quadrant:
Since [tex]\(\theta\)[/tex] is in the second quadrant ([tex]\(\frac{\pi}{2} < \theta < \pi\)[/tex]), and we know that in the second quadrant, the cosine function is negative, [tex]\(\sec \theta\)[/tex] (which is the reciprocal of [tex]\(\cos \theta\)[/tex]) must also be negative.
6. Select the correct value:
[tex]\[ \sec \theta = -\frac{5}{3} \][/tex]
Thus, the correct value of [tex]\(\sec \theta\)[/tex] is [tex]\(\boxed{-\frac{5}{3}}\)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.