Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the number of grams of oxygen gas ([tex]$\text{O}_2$[/tex]) required to react completely with 9.3 moles of aluminum ([tex]$\text{Al}$[/tex]), we can follow these detailed steps:
1. Understand the Balanced Chemical Equation:
[tex]\[ 4 \text{Al} + 3 \text{O}_2 \rightarrow 2 \text{Al}_2\text{O}_3 \][/tex]
The balanced equation tells us that 4 moles of aluminum react with 3 moles of oxygen gas.
2. Convert Given Information:
- We are given that we have 9.3 moles of aluminum ([tex]$\text{Al}$[/tex]).
- The molar mass of [tex]$\text{O}_2$[/tex] is 32.00 g/mol.
3. Use Stoichiometry to Find Moles of [tex]$\text{O}_2$[/tex] Needed:
- According to the balanced equation, [tex]$4$[/tex] moles of [tex]$\text{Al}$[/tex] react with [tex]$3$[/tex] moles of [tex]$\text{O}_2$[/tex].
- We need to determine how many moles of [tex]$\text{O}_2$[/tex] are required for [tex]$9.3$[/tex] moles of [tex]$\text{Al}$[/tex].
The ratio of moles of [tex]$\text{O}_2$[/tex] to moles of [tex]$\text{Al}$[/tex] according to the balanced equation is:
[tex]\[ \frac{3 \text{ moles of } \text{O}_2}{4 \text{ moles of } \text{Al}} \][/tex]
So, for [tex]$9.3$[/tex] moles of aluminum, the moles of [tex]$\text{O}_2$[/tex] needed are:
[tex]\[ \left(\frac{3}{4}\right) \times 9.3 \text{ moles of } \text{Al} = 6.975 \text{ moles of } \text{O}_2 \][/tex]
4. Convert Moles of [tex]$\text{O}_2$[/tex] to Grams:
- To find the mass of [tex]$\text{O}_2$[/tex] needed, we use the molar mass of [tex]$\text{O}_2$[/tex]:
[tex]\[ 6.975 \text{ moles of } \text{O}_2 \times 32.00 \text{ g/mol} = 223.2 \text{ grams of } \text{O}_2 \][/tex]
Final Answer:
To react completely with 9.3 moles of aluminum, we need 223.2 grams of oxygen gas ([tex]$\text{O}_2$[/tex]).
1. Understand the Balanced Chemical Equation:
[tex]\[ 4 \text{Al} + 3 \text{O}_2 \rightarrow 2 \text{Al}_2\text{O}_3 \][/tex]
The balanced equation tells us that 4 moles of aluminum react with 3 moles of oxygen gas.
2. Convert Given Information:
- We are given that we have 9.3 moles of aluminum ([tex]$\text{Al}$[/tex]).
- The molar mass of [tex]$\text{O}_2$[/tex] is 32.00 g/mol.
3. Use Stoichiometry to Find Moles of [tex]$\text{O}_2$[/tex] Needed:
- According to the balanced equation, [tex]$4$[/tex] moles of [tex]$\text{Al}$[/tex] react with [tex]$3$[/tex] moles of [tex]$\text{O}_2$[/tex].
- We need to determine how many moles of [tex]$\text{O}_2$[/tex] are required for [tex]$9.3$[/tex] moles of [tex]$\text{Al}$[/tex].
The ratio of moles of [tex]$\text{O}_2$[/tex] to moles of [tex]$\text{Al}$[/tex] according to the balanced equation is:
[tex]\[ \frac{3 \text{ moles of } \text{O}_2}{4 \text{ moles of } \text{Al}} \][/tex]
So, for [tex]$9.3$[/tex] moles of aluminum, the moles of [tex]$\text{O}_2$[/tex] needed are:
[tex]\[ \left(\frac{3}{4}\right) \times 9.3 \text{ moles of } \text{Al} = 6.975 \text{ moles of } \text{O}_2 \][/tex]
4. Convert Moles of [tex]$\text{O}_2$[/tex] to Grams:
- To find the mass of [tex]$\text{O}_2$[/tex] needed, we use the molar mass of [tex]$\text{O}_2$[/tex]:
[tex]\[ 6.975 \text{ moles of } \text{O}_2 \times 32.00 \text{ g/mol} = 223.2 \text{ grams of } \text{O}_2 \][/tex]
Final Answer:
To react completely with 9.3 moles of aluminum, we need 223.2 grams of oxygen gas ([tex]$\text{O}_2$[/tex]).
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.