Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the number of grams of oxygen gas ([tex]$\text{O}_2$[/tex]) required to react completely with 9.3 moles of aluminum ([tex]$\text{Al}$[/tex]), we can follow these detailed steps:
1. Understand the Balanced Chemical Equation:
[tex]\[ 4 \text{Al} + 3 \text{O}_2 \rightarrow 2 \text{Al}_2\text{O}_3 \][/tex]
The balanced equation tells us that 4 moles of aluminum react with 3 moles of oxygen gas.
2. Convert Given Information:
- We are given that we have 9.3 moles of aluminum ([tex]$\text{Al}$[/tex]).
- The molar mass of [tex]$\text{O}_2$[/tex] is 32.00 g/mol.
3. Use Stoichiometry to Find Moles of [tex]$\text{O}_2$[/tex] Needed:
- According to the balanced equation, [tex]$4$[/tex] moles of [tex]$\text{Al}$[/tex] react with [tex]$3$[/tex] moles of [tex]$\text{O}_2$[/tex].
- We need to determine how many moles of [tex]$\text{O}_2$[/tex] are required for [tex]$9.3$[/tex] moles of [tex]$\text{Al}$[/tex].
The ratio of moles of [tex]$\text{O}_2$[/tex] to moles of [tex]$\text{Al}$[/tex] according to the balanced equation is:
[tex]\[ \frac{3 \text{ moles of } \text{O}_2}{4 \text{ moles of } \text{Al}} \][/tex]
So, for [tex]$9.3$[/tex] moles of aluminum, the moles of [tex]$\text{O}_2$[/tex] needed are:
[tex]\[ \left(\frac{3}{4}\right) \times 9.3 \text{ moles of } \text{Al} = 6.975 \text{ moles of } \text{O}_2 \][/tex]
4. Convert Moles of [tex]$\text{O}_2$[/tex] to Grams:
- To find the mass of [tex]$\text{O}_2$[/tex] needed, we use the molar mass of [tex]$\text{O}_2$[/tex]:
[tex]\[ 6.975 \text{ moles of } \text{O}_2 \times 32.00 \text{ g/mol} = 223.2 \text{ grams of } \text{O}_2 \][/tex]
Final Answer:
To react completely with 9.3 moles of aluminum, we need 223.2 grams of oxygen gas ([tex]$\text{O}_2$[/tex]).
1. Understand the Balanced Chemical Equation:
[tex]\[ 4 \text{Al} + 3 \text{O}_2 \rightarrow 2 \text{Al}_2\text{O}_3 \][/tex]
The balanced equation tells us that 4 moles of aluminum react with 3 moles of oxygen gas.
2. Convert Given Information:
- We are given that we have 9.3 moles of aluminum ([tex]$\text{Al}$[/tex]).
- The molar mass of [tex]$\text{O}_2$[/tex] is 32.00 g/mol.
3. Use Stoichiometry to Find Moles of [tex]$\text{O}_2$[/tex] Needed:
- According to the balanced equation, [tex]$4$[/tex] moles of [tex]$\text{Al}$[/tex] react with [tex]$3$[/tex] moles of [tex]$\text{O}_2$[/tex].
- We need to determine how many moles of [tex]$\text{O}_2$[/tex] are required for [tex]$9.3$[/tex] moles of [tex]$\text{Al}$[/tex].
The ratio of moles of [tex]$\text{O}_2$[/tex] to moles of [tex]$\text{Al}$[/tex] according to the balanced equation is:
[tex]\[ \frac{3 \text{ moles of } \text{O}_2}{4 \text{ moles of } \text{Al}} \][/tex]
So, for [tex]$9.3$[/tex] moles of aluminum, the moles of [tex]$\text{O}_2$[/tex] needed are:
[tex]\[ \left(\frac{3}{4}\right) \times 9.3 \text{ moles of } \text{Al} = 6.975 \text{ moles of } \text{O}_2 \][/tex]
4. Convert Moles of [tex]$\text{O}_2$[/tex] to Grams:
- To find the mass of [tex]$\text{O}_2$[/tex] needed, we use the molar mass of [tex]$\text{O}_2$[/tex]:
[tex]\[ 6.975 \text{ moles of } \text{O}_2 \times 32.00 \text{ g/mol} = 223.2 \text{ grams of } \text{O}_2 \][/tex]
Final Answer:
To react completely with 9.3 moles of aluminum, we need 223.2 grams of oxygen gas ([tex]$\text{O}_2$[/tex]).
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.