Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve this problem, we need to determine how many grams of oxygen gas ([tex]\(O_2\)[/tex]) are needed to completely react with 9.3 moles of aluminum ([tex]\(Al\)[/tex]) based on the given chemical reaction:
[tex]\[ 4 \text{Al} + 3 \text{O}_2 \rightarrow 2 \text{Al}_2\text{O}_3 \][/tex]
Here's a step-by-step solution to find the answer:
### Step 1: Write Down Given Information
- We are given 9.3 moles of aluminum ([tex]\(9.3\)[/tex] mol Al).
- The balanced chemical equation is:
[tex]\[ 4 \text{Al} + 3 \text{O}_2 \rightarrow 2 \text{Al}_2\text{O}_3 \][/tex]
### Step 2: Determine the Mole Ratio
From the balanced equation, 4 moles of [tex]\( \text{Al} \)[/tex] react with 3 moles of [tex]\( \text{O}_2 \)[/tex]. Thus, the mole ratio of [tex]\( \text{Al} \)[/tex] to [tex]\( \text{O}_2 \)[/tex] is 4:3.
### Step 3: Calculate the Required Moles of [tex]\( \text{O}_2 \)[/tex]
Using the mole ratio, we can find how many moles of [tex]\( \text{O}_2 \)[/tex] are needed for 9.3 moles of [tex]\( \text{Al} \)[/tex]:
[tex]\[ \text{Moles of } \text{O}_2 = \left(\frac{3}{4}\right) \times 9.3 \text{ mol Al} = 6.975 \text{ moles of } \text{O}_2 \][/tex]
### Step 4: Find the Molar Mass of [tex]\( \text{O}_2 \)[/tex]
The molar mass of [tex]\( \text{O}_2 \)[/tex]:
[tex]\[ \text{Molar mass of } \text{O}_2 = 2 \times 16 \text{ g/mol} = 32 \text{ g/mol} \][/tex]
### Step 5: Calculate the Grams of [tex]\( \text{O}_2 \)[/tex] Needed
Now we can find the mass of [tex]\( \text{O}_2 \)[/tex] needed by multiplying the moles of [tex]\( \text{O}_2 \)[/tex] by its molar mass:
[tex]\[ \text{Grams of } \text{O}_2 \text{ needed} = 6.975 \text{ moles} \times 32 \text{ g/mol} = 223.2 \text{ grams of } \text{O}_2 \][/tex]
### Conclusion
- The unknown in the problem is the grams of [tex]\( O_2 \)[/tex] needed.
- Given: [tex]\( 9.3 \)[/tex] mol [tex]\( Al \)[/tex]
Therefore, the number of grams of oxygen gas ([tex]\( O_2 \)[/tex]) needed to completely react with [tex]\( 9.3 \)[/tex] moles of aluminum is:
[tex]\[ 223.2 \text{ grams } O_2 \][/tex]
[tex]\[ 4 \text{Al} + 3 \text{O}_2 \rightarrow 2 \text{Al}_2\text{O}_3 \][/tex]
Here's a step-by-step solution to find the answer:
### Step 1: Write Down Given Information
- We are given 9.3 moles of aluminum ([tex]\(9.3\)[/tex] mol Al).
- The balanced chemical equation is:
[tex]\[ 4 \text{Al} + 3 \text{O}_2 \rightarrow 2 \text{Al}_2\text{O}_3 \][/tex]
### Step 2: Determine the Mole Ratio
From the balanced equation, 4 moles of [tex]\( \text{Al} \)[/tex] react with 3 moles of [tex]\( \text{O}_2 \)[/tex]. Thus, the mole ratio of [tex]\( \text{Al} \)[/tex] to [tex]\( \text{O}_2 \)[/tex] is 4:3.
### Step 3: Calculate the Required Moles of [tex]\( \text{O}_2 \)[/tex]
Using the mole ratio, we can find how many moles of [tex]\( \text{O}_2 \)[/tex] are needed for 9.3 moles of [tex]\( \text{Al} \)[/tex]:
[tex]\[ \text{Moles of } \text{O}_2 = \left(\frac{3}{4}\right) \times 9.3 \text{ mol Al} = 6.975 \text{ moles of } \text{O}_2 \][/tex]
### Step 4: Find the Molar Mass of [tex]\( \text{O}_2 \)[/tex]
The molar mass of [tex]\( \text{O}_2 \)[/tex]:
[tex]\[ \text{Molar mass of } \text{O}_2 = 2 \times 16 \text{ g/mol} = 32 \text{ g/mol} \][/tex]
### Step 5: Calculate the Grams of [tex]\( \text{O}_2 \)[/tex] Needed
Now we can find the mass of [tex]\( \text{O}_2 \)[/tex] needed by multiplying the moles of [tex]\( \text{O}_2 \)[/tex] by its molar mass:
[tex]\[ \text{Grams of } \text{O}_2 \text{ needed} = 6.975 \text{ moles} \times 32 \text{ g/mol} = 223.2 \text{ grams of } \text{O}_2 \][/tex]
### Conclusion
- The unknown in the problem is the grams of [tex]\( O_2 \)[/tex] needed.
- Given: [tex]\( 9.3 \)[/tex] mol [tex]\( Al \)[/tex]
Therefore, the number of grams of oxygen gas ([tex]\( O_2 \)[/tex]) needed to completely react with [tex]\( 9.3 \)[/tex] moles of aluminum is:
[tex]\[ 223.2 \text{ grams } O_2 \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.