Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine how many grams of nitrogen ([tex]\(N_2\)[/tex]) are required to react with 6.25 moles of hydrogen ([tex]\(H_2\)[/tex]), we can follow these steps:
1. Understand the balanced chemical equation:
[tex]\[ N_2 + 3H_2 \rightarrow 2NH_3 \][/tex]
According to this equation, 1 mole of [tex]\(N_2\)[/tex] reacts with 3 moles of [tex]\(H_2\)[/tex].
2. Calculate the moles of [tex]\(N_2\)[/tex] needed:
Given that we have 6.25 moles of [tex]\(H_2\)[/tex], we can determine the moles of [tex]\(N_2\)[/tex] required using the stoichiometric ratio from the balanced equation:
[tex]\[ \text{Moles of } N_2 = \frac{\text{Moles of } H_2}{3} \][/tex]
Substituting in the given amount of hydrogen:
[tex]\[ \text{Moles of } N_2 = \frac{6.25 \text{ moles } H_2}{3} = 2.0833333333333335 \text{ moles} \][/tex]
3. Convert moles of [tex]\(N_2\)[/tex] to grams:
We use the molar mass of [tex]\(N_2\)[/tex] to convert the moles to grams. The molar mass of [tex]\(N_2\)[/tex] is 28.02 g/mol.
[tex]\[ \text{Grams of } N_2 = \text{Moles of } N_2 \times \text{Molar mass of } N_2 \][/tex]
Substituting the values:
[tex]\[ \text{Grams of } N_2 = 2.0833333333333335 \text{ moles} \times 28.02 \text{ g/mol} = 58.375 \text{ grams} \][/tex]
Thus, you would need 58.375 grams of nitrogen ([tex]\(N_2\)[/tex]) to react with 6.25 moles of hydrogen ([tex]\(H_2\)[/tex]).
1. Understand the balanced chemical equation:
[tex]\[ N_2 + 3H_2 \rightarrow 2NH_3 \][/tex]
According to this equation, 1 mole of [tex]\(N_2\)[/tex] reacts with 3 moles of [tex]\(H_2\)[/tex].
2. Calculate the moles of [tex]\(N_2\)[/tex] needed:
Given that we have 6.25 moles of [tex]\(H_2\)[/tex], we can determine the moles of [tex]\(N_2\)[/tex] required using the stoichiometric ratio from the balanced equation:
[tex]\[ \text{Moles of } N_2 = \frac{\text{Moles of } H_2}{3} \][/tex]
Substituting in the given amount of hydrogen:
[tex]\[ \text{Moles of } N_2 = \frac{6.25 \text{ moles } H_2}{3} = 2.0833333333333335 \text{ moles} \][/tex]
3. Convert moles of [tex]\(N_2\)[/tex] to grams:
We use the molar mass of [tex]\(N_2\)[/tex] to convert the moles to grams. The molar mass of [tex]\(N_2\)[/tex] is 28.02 g/mol.
[tex]\[ \text{Grams of } N_2 = \text{Moles of } N_2 \times \text{Molar mass of } N_2 \][/tex]
Substituting the values:
[tex]\[ \text{Grams of } N_2 = 2.0833333333333335 \text{ moles} \times 28.02 \text{ g/mol} = 58.375 \text{ grams} \][/tex]
Thus, you would need 58.375 grams of nitrogen ([tex]\(N_2\)[/tex]) to react with 6.25 moles of hydrogen ([tex]\(H_2\)[/tex]).
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.