Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

A charge of [tex][tex]$7.2 \times 10^{-5} C$[/tex][/tex] has an electric potential energy of [tex][tex]$1.08 \times 10^{-2} J$[/tex][/tex]. The electric potential, to the nearest whole number, is [tex]\square \, V[/tex].

Sagot :

To find the electric potential [tex]\( V \)[/tex] given a charge [tex]\( q \)[/tex] and an electric potential energy [tex]\( U \)[/tex], we use the following formula:

[tex]\[ V = \frac{U}{q} \][/tex]

Let's substitute the given values into the formula:

- The charge [tex]\( q \)[/tex] is [tex]\( 7.2 \times 10^{-5} \)[/tex] coulombs.
- The electric potential energy [tex]\( U \)[/tex] is [tex]\( 1.08 \times 10^{-2} \)[/tex] joules.

Now, using the formula:

[tex]\[ V = \frac{1.08 \times 10^{-2} \text{ J}}{7.2 \times 10^{-5} \text{ C}} \][/tex]

Next, perform the division:

[tex]\[ V = \frac{1.08 \times 10^{-2}}{7.2 \times 10^{-5}} \][/tex]

This calculation results in:

[tex]\[ V = 150.0 \text{ V} \][/tex]

To provide the answer to the nearest whole number, the electric potential [tex]\( V \)[/tex] is:

[tex]\[ V = 150 \text{ V} \][/tex]

Therefore, the electric potential, to the nearest whole number, is [tex]\( 150 \)[/tex] volts.