Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the domain of the function [tex]\( f(x) = \frac{20}{x^2 - 5x + 6} \)[/tex], we need to determine the values of [tex]\( x \)[/tex] for which the function is defined. The function [tex]\( f(x) \)[/tex] is defined for all [tex]\( x \)[/tex] except where the denominator is zero because division by zero is undefined.
1. Identify the denominator:
The denominator of the function is [tex]\( x^2 - 5x + 6 \)[/tex].
2. Set the denominator equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ x^2 - 5x + 6 = 0 \][/tex]
3. Factor the quadratic equation:
To factor [tex]\( x^2 - 5x + 6 \)[/tex], we look for two numbers that multiply to 6 and add up to -5. These numbers are -2 and -3.
Hence, we can factor the quadratic as:
[tex]\[ x^2 - 5x + 6 = (x - 2)(x - 3) \][/tex]
4. Solve the factored equation:
Set each factor equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ x - 2 = 0 \quad \Rightarrow \quad x = 2 \][/tex]
[tex]\[ x - 3 = 0 \quad \Rightarrow \quad x = 3 \][/tex]
5. Determine the domain:
The values [tex]\( x = 2 \)[/tex] and [tex]\( x = 3 \)[/tex] are the roots where the denominator is zero, and thus, [tex]\( f(x) \)[/tex] is undefined at these values. However, [tex]\( f(x) \)[/tex] is defined for all other real numbers.
Therefore, the domain of [tex]\( f(x) \)[/tex] is all real numbers except 2 and 3. In interval notation, this is:
[tex]\[ (-\infty, 2) \cup (2, 3) \cup (3, \infty) \][/tex]
So, the domain of [tex]\( f \)[/tex] is:
[tex]\[ (-\infty, 2) \cup (2, 3) \cup (3, \infty) \][/tex]
1. Identify the denominator:
The denominator of the function is [tex]\( x^2 - 5x + 6 \)[/tex].
2. Set the denominator equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ x^2 - 5x + 6 = 0 \][/tex]
3. Factor the quadratic equation:
To factor [tex]\( x^2 - 5x + 6 \)[/tex], we look for two numbers that multiply to 6 and add up to -5. These numbers are -2 and -3.
Hence, we can factor the quadratic as:
[tex]\[ x^2 - 5x + 6 = (x - 2)(x - 3) \][/tex]
4. Solve the factored equation:
Set each factor equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ x - 2 = 0 \quad \Rightarrow \quad x = 2 \][/tex]
[tex]\[ x - 3 = 0 \quad \Rightarrow \quad x = 3 \][/tex]
5. Determine the domain:
The values [tex]\( x = 2 \)[/tex] and [tex]\( x = 3 \)[/tex] are the roots where the denominator is zero, and thus, [tex]\( f(x) \)[/tex] is undefined at these values. However, [tex]\( f(x) \)[/tex] is defined for all other real numbers.
Therefore, the domain of [tex]\( f(x) \)[/tex] is all real numbers except 2 and 3. In interval notation, this is:
[tex]\[ (-\infty, 2) \cup (2, 3) \cup (3, \infty) \][/tex]
So, the domain of [tex]\( f \)[/tex] is:
[tex]\[ (-\infty, 2) \cup (2, 3) \cup (3, \infty) \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.