Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve the problem of finding the radius [tex]\( r \)[/tex] that minimizes the total surface area [tex]\( S \)[/tex] of the cylindrical container, we'll follow a systematic approach. Given the total surface area function:
[tex]\[ S = 2 \pi r^2 + \frac{100}{r} \][/tex]
we need to find the radius [tex]\( r \)[/tex] that minimizes this function. Let's break this down step-by-step:
### Step 1: Define the Surface Area Function
The surface area [tex]\( S \)[/tex] is a function of the radius [tex]\( r \)[/tex]:
[tex]\[ S(r) = 2 \pi r^2 + \frac{100}{r} \][/tex]
### Step 2: Find the First Derivative
To find the critical points where [tex]\( S \)[/tex] might be minimized, we need to find the first derivative of [tex]\( S \)[/tex] with respect to [tex]\( r \)[/tex]:
[tex]\[ S'(r) = \frac{d}{dr} \left( 2 \pi r^2 + \frac{100}{r} \right) \][/tex]
Using the power rule and the quotient rule, we get:
[tex]\[ S'(r) = 4 \pi r - \frac{100}{r^2} \][/tex]
### Step 3: Solve for Critical Points
Set the first derivative equal to zero and solve for [tex]\( r \)[/tex]:
[tex]\[ 4 \pi r - \frac{100}{r^2} = 0 \][/tex]
This can be rearranged to:
[tex]\[ 4 \pi r = \frac{100}{r^2} \][/tex]
Multiply both sides by [tex]\( r^2 \)[/tex] to get rid of the denominator:
[tex]\[ 4 \pi r^3 = 100 \][/tex]
Divide both sides by [tex]\( 4 \pi \)[/tex]:
[tex]\[ r^3 = \frac{100}{4 \pi} \][/tex]
Simplify:
[tex]\[ r^3 = \frac{25}{\pi} \][/tex]
To solve for [tex]\( r \)[/tex], take the cube root of both sides:
[tex]\[ r = \left(\frac{25}{\pi}\right)^{\frac{1}{3}} = \frac{5^{2/3}}{\pi^{1/3}} \][/tex]
### Step 4: Verify it is a Minimum
To confirm that this critical point gives a minimum surface area, we need to check the second derivative of [tex]\( S \)[/tex]:
[tex]\[ S''(r) = \frac{d}{dr} \left( 4 \pi r - \frac{100}{r^2} \right) \][/tex]
Differentiate again:
[tex]\[ S''(r) = 4 \pi + \frac{200}{r^3} \][/tex]
Evaluate [tex]\( S''(r) \)[/tex] at [tex]\( r = \frac{5^{2/3}}{\pi^{1/3}} \)[/tex]:
[tex]\[ S''\left(\frac{5^{2/3}}{\pi^{1/3}}\right) = 4 \pi + \frac{200}{\left(\frac{5^{2/3}}{\pi^{1/3}}\right)^3} \][/tex]
Since [tex]\( \left(\frac{5^{2/3}}{\pi^{1/3}}\right)^3 = \frac{25}{\pi} \)[/tex]:
[tex]\[ S''\left(\frac{5^{2/3}}{\pi^{1/3}}\right) = 4 \pi + \frac{200}{\frac{25}{\pi}} = 4 \pi + 8 \pi = 12 \pi \][/tex]
The second derivative [tex]\( S''\left(\frac{5^{2/3}}{\pi^{1/3}}\right) = 12 \pi \)[/tex] is positive, confirming that [tex]\( r = \frac{5^{2/3}}{\pi^{1/3}} \)[/tex] is a minimum.
### Conclusion
The radius [tex]\( r \)[/tex] of the cylindrical container that minimizes the surface area is:
[tex]\[ r = \frac{5^{2/3}}{\pi^{1/3}} \][/tex]
The minimum surface area can be found by substituting this [tex]\( r \)[/tex] back into the original surface area function:
[tex]\[ S\left(\frac{5^{2/3}}{\pi^{1/3}}\right) = 2 \pi \left(\frac{5^{2/3}}{\pi^{1/3}}\right)^2 + \frac{100}{\frac{5^{2/3}}{\pi^{1/3}}} \][/tex]
Simplify each term:
[tex]\[ \left(\frac{5^{2/3}}{\pi^{1/3}}\right)^2 = \frac{5^{4/3}}{\pi^{2/3}} \][/tex]
So,
[tex]\[ 2 \pi \cdot \frac{5^{4/3}}{\pi^{2/3}} = 2 \pi \cdot \frac{5^{4/3}}{\pi^{2/3}} = 2 \cdot 5^{4/3} \pi^{1/3} \][/tex]
Similarly,
[tex]\[ \frac{100}{\frac{5^{2/3}}{\pi^{1/3}}} = 100 \cdot \frac{\pi^{1/3}}{5^{2/3}} = 100 \cdot 5^{-2/3} \pi^{1/3} = 20 \cdot 5^{1/3} \pi^{1/3} \][/tex]
Adding these terms together gives the minimum surface area:
[tex]\[ S\left(\frac{5^{2/3}}{\pi^{1/3}}\right) = 2 \cdot 5^{4/3} \pi^{1/3} + 20 \cdot 5^{1/3} \pi^{1/3} = 30 \cdot 5^{1/3} \pi^{1/3} \][/tex]
Thus, the radius that minimizes the surface area is [tex]\( r = \frac{5^{2/3}}{\pi^{1/3}} \)[/tex] and the minimum surface area is [tex]\( 30 \cdot 5^{1/3} \pi^{1/3} \)[/tex] cm[tex]\(^2\)[/tex].
[tex]\[ S = 2 \pi r^2 + \frac{100}{r} \][/tex]
we need to find the radius [tex]\( r \)[/tex] that minimizes this function. Let's break this down step-by-step:
### Step 1: Define the Surface Area Function
The surface area [tex]\( S \)[/tex] is a function of the radius [tex]\( r \)[/tex]:
[tex]\[ S(r) = 2 \pi r^2 + \frac{100}{r} \][/tex]
### Step 2: Find the First Derivative
To find the critical points where [tex]\( S \)[/tex] might be minimized, we need to find the first derivative of [tex]\( S \)[/tex] with respect to [tex]\( r \)[/tex]:
[tex]\[ S'(r) = \frac{d}{dr} \left( 2 \pi r^2 + \frac{100}{r} \right) \][/tex]
Using the power rule and the quotient rule, we get:
[tex]\[ S'(r) = 4 \pi r - \frac{100}{r^2} \][/tex]
### Step 3: Solve for Critical Points
Set the first derivative equal to zero and solve for [tex]\( r \)[/tex]:
[tex]\[ 4 \pi r - \frac{100}{r^2} = 0 \][/tex]
This can be rearranged to:
[tex]\[ 4 \pi r = \frac{100}{r^2} \][/tex]
Multiply both sides by [tex]\( r^2 \)[/tex] to get rid of the denominator:
[tex]\[ 4 \pi r^3 = 100 \][/tex]
Divide both sides by [tex]\( 4 \pi \)[/tex]:
[tex]\[ r^3 = \frac{100}{4 \pi} \][/tex]
Simplify:
[tex]\[ r^3 = \frac{25}{\pi} \][/tex]
To solve for [tex]\( r \)[/tex], take the cube root of both sides:
[tex]\[ r = \left(\frac{25}{\pi}\right)^{\frac{1}{3}} = \frac{5^{2/3}}{\pi^{1/3}} \][/tex]
### Step 4: Verify it is a Minimum
To confirm that this critical point gives a minimum surface area, we need to check the second derivative of [tex]\( S \)[/tex]:
[tex]\[ S''(r) = \frac{d}{dr} \left( 4 \pi r - \frac{100}{r^2} \right) \][/tex]
Differentiate again:
[tex]\[ S''(r) = 4 \pi + \frac{200}{r^3} \][/tex]
Evaluate [tex]\( S''(r) \)[/tex] at [tex]\( r = \frac{5^{2/3}}{\pi^{1/3}} \)[/tex]:
[tex]\[ S''\left(\frac{5^{2/3}}{\pi^{1/3}}\right) = 4 \pi + \frac{200}{\left(\frac{5^{2/3}}{\pi^{1/3}}\right)^3} \][/tex]
Since [tex]\( \left(\frac{5^{2/3}}{\pi^{1/3}}\right)^3 = \frac{25}{\pi} \)[/tex]:
[tex]\[ S''\left(\frac{5^{2/3}}{\pi^{1/3}}\right) = 4 \pi + \frac{200}{\frac{25}{\pi}} = 4 \pi + 8 \pi = 12 \pi \][/tex]
The second derivative [tex]\( S''\left(\frac{5^{2/3}}{\pi^{1/3}}\right) = 12 \pi \)[/tex] is positive, confirming that [tex]\( r = \frac{5^{2/3}}{\pi^{1/3}} \)[/tex] is a minimum.
### Conclusion
The radius [tex]\( r \)[/tex] of the cylindrical container that minimizes the surface area is:
[tex]\[ r = \frac{5^{2/3}}{\pi^{1/3}} \][/tex]
The minimum surface area can be found by substituting this [tex]\( r \)[/tex] back into the original surface area function:
[tex]\[ S\left(\frac{5^{2/3}}{\pi^{1/3}}\right) = 2 \pi \left(\frac{5^{2/3}}{\pi^{1/3}}\right)^2 + \frac{100}{\frac{5^{2/3}}{\pi^{1/3}}} \][/tex]
Simplify each term:
[tex]\[ \left(\frac{5^{2/3}}{\pi^{1/3}}\right)^2 = \frac{5^{4/3}}{\pi^{2/3}} \][/tex]
So,
[tex]\[ 2 \pi \cdot \frac{5^{4/3}}{\pi^{2/3}} = 2 \pi \cdot \frac{5^{4/3}}{\pi^{2/3}} = 2 \cdot 5^{4/3} \pi^{1/3} \][/tex]
Similarly,
[tex]\[ \frac{100}{\frac{5^{2/3}}{\pi^{1/3}}} = 100 \cdot \frac{\pi^{1/3}}{5^{2/3}} = 100 \cdot 5^{-2/3} \pi^{1/3} = 20 \cdot 5^{1/3} \pi^{1/3} \][/tex]
Adding these terms together gives the minimum surface area:
[tex]\[ S\left(\frac{5^{2/3}}{\pi^{1/3}}\right) = 2 \cdot 5^{4/3} \pi^{1/3} + 20 \cdot 5^{1/3} \pi^{1/3} = 30 \cdot 5^{1/3} \pi^{1/3} \][/tex]
Thus, the radius that minimizes the surface area is [tex]\( r = \frac{5^{2/3}}{\pi^{1/3}} \)[/tex] and the minimum surface area is [tex]\( 30 \cdot 5^{1/3} \pi^{1/3} \)[/tex] cm[tex]\(^2\)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.