Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Given: D is the midpoint of AB; E is the midpoint of AC. Prove: DE ∥ BC On a coordinate plane, triangle A B C is shown. Line segment D E goes from side A B to side A C. Point A is at (2 b, 2c), point E is at (a + b, c), point C is at (2 a, 0), point B is at (0, 0), and point D is at (b, c). Complete the missing parts of the paragraph proof. Proof: To prove that DE and BC are parallel, we need to show that they have the same slope. slope of DE = StartFraction v 2 minus v 1 Over x 2 minus x 1 EndFraction = StartFraction c minus c Over a + b minus b EndFraction = = slope of BC = Therefore, because , DE ∥ BC.