Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's start by understanding what it means for terms to be like radicals to [tex]\(\sqrt{11}\)[/tex]. Terms are considered like radicals if they have the same radical part. In this context, we are looking for terms involving [tex]\(\sqrt{11}\)[/tex], which can also be written as [tex]\(11^{1/2}\)[/tex].
The options given are:
1. [tex]\(6 \sqrt[3]{11}\)[/tex]
2. [tex]\(x \sqrt{11}\)[/tex]
3. [tex]\(2 \sqrt[3]{11}\)[/tex]
4. [tex]\(-5 \sqrt[4]{11}\)[/tex]
5. [tex]\(-6 \sqrt{11}\)[/tex]
Let's examine each option to determine if the term has the same radical part as [tex]\(\sqrt{11}\)[/tex]:
1. [tex]\(6 \sqrt[3]{11}\)[/tex]: This is [tex]\(6 \times 11^{1/3}\)[/tex], which is the cubic root of 11. It does not match [tex]\(\sqrt{11}\)[/tex].
2. [tex]\(x \sqrt{11}\)[/tex]: This is [tex]\(x \times 11^{1/2}\)[/tex], which is the same radical part as [tex]\(\sqrt{11}\)[/tex]. So, this is a like radical to [tex]\(\sqrt{11}\)[/tex].
3. [tex]\(2 \sqrt[3]{11}\)[/tex]: This is [tex]\(2 \times 11^{1/3}\)[/tex], which is the cubic root of 11. It does not match [tex]\(\sqrt{11}\)[/tex].
4. [tex]\(-5 \sqrt[4]{11}\)[/tex]: This is [tex]\(-5 \times 11^{1/4}\)[/tex], which is the fourth root of 11. It does not match [tex]\(\sqrt{11}\)[/tex].
5. [tex]\(-6 \sqrt{11}\)[/tex]: This is [tex]\(-6 \times 11^{1/2}\)[/tex], which matches the same radical part as [tex]\(\sqrt{11}\)[/tex]. So, this is also a like radical to [tex]\(\sqrt{11}\)[/tex].
After examining each option, the terms that are like radicals to [tex]\(\sqrt{11}\)[/tex] are:
[tex]\[ x \sqrt{11} \quad \text{and} \quad -6 \sqrt{11} \][/tex]
Thus, the indices of the options that are like radicals to [tex]\(\sqrt{11}\)[/tex] are [tex]\(2\)[/tex] and [tex]\(5\)[/tex].
So, the correct answer is:
[tex]\[ [2, 5] \][/tex]
The options given are:
1. [tex]\(6 \sqrt[3]{11}\)[/tex]
2. [tex]\(x \sqrt{11}\)[/tex]
3. [tex]\(2 \sqrt[3]{11}\)[/tex]
4. [tex]\(-5 \sqrt[4]{11}\)[/tex]
5. [tex]\(-6 \sqrt{11}\)[/tex]
Let's examine each option to determine if the term has the same radical part as [tex]\(\sqrt{11}\)[/tex]:
1. [tex]\(6 \sqrt[3]{11}\)[/tex]: This is [tex]\(6 \times 11^{1/3}\)[/tex], which is the cubic root of 11. It does not match [tex]\(\sqrt{11}\)[/tex].
2. [tex]\(x \sqrt{11}\)[/tex]: This is [tex]\(x \times 11^{1/2}\)[/tex], which is the same radical part as [tex]\(\sqrt{11}\)[/tex]. So, this is a like radical to [tex]\(\sqrt{11}\)[/tex].
3. [tex]\(2 \sqrt[3]{11}\)[/tex]: This is [tex]\(2 \times 11^{1/3}\)[/tex], which is the cubic root of 11. It does not match [tex]\(\sqrt{11}\)[/tex].
4. [tex]\(-5 \sqrt[4]{11}\)[/tex]: This is [tex]\(-5 \times 11^{1/4}\)[/tex], which is the fourth root of 11. It does not match [tex]\(\sqrt{11}\)[/tex].
5. [tex]\(-6 \sqrt{11}\)[/tex]: This is [tex]\(-6 \times 11^{1/2}\)[/tex], which matches the same radical part as [tex]\(\sqrt{11}\)[/tex]. So, this is also a like radical to [tex]\(\sqrt{11}\)[/tex].
After examining each option, the terms that are like radicals to [tex]\(\sqrt{11}\)[/tex] are:
[tex]\[ x \sqrt{11} \quad \text{and} \quad -6 \sqrt{11} \][/tex]
Thus, the indices of the options that are like radicals to [tex]\(\sqrt{11}\)[/tex] are [tex]\(2\)[/tex] and [tex]\(5\)[/tex].
So, the correct answer is:
[tex]\[ [2, 5] \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.