Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's simplify each of the given radical expressions step-by-step.
1. Expression 1: [tex]\( 3 \sqrt{7} \)[/tex]
- The term [tex]\( \sqrt{7} \)[/tex] represents the square root of 7.
- Multiplying [tex]\( 3 \)[/tex] by [tex]\( \sqrt{7} \)[/tex] gives [tex]\( 3 \sqrt{7} \)[/tex].
- This expression is already in its simplest form since [tex]\( \sqrt{7} \)[/tex] cannot be simplified further.
- The simplified expression is [tex]\( 3 \sqrt{7} \)[/tex].
2. Expression 2: [tex]\( -5 \sqrt[4]{7} \)[/tex]
- The term [tex]\( \sqrt[4]{7} \)[/tex] represents the fourth root of 7, which is also denoted as [tex]\( 7^{1/4} \)[/tex].
- Multiplying [tex]\( -5 \)[/tex] by [tex]\( \sqrt[4]{7} \)[/tex] results in [tex]\( -5 \sqrt[4]{7} \)[/tex].
- This expression is already in its simplest form since [tex]\( \sqrt[4]{7} = 7^{1/4} \)[/tex] cannot be simplified further.
- The simplified expression is [tex]\( -5 \sqrt[4]{7} \)[/tex], which can also be written as [tex]\( -5 \cdot 7^{1/4} \)[/tex].
3. Expression 3: [tex]\( -2 \sqrt{7} \)[/tex]
- The term [tex]\( \sqrt{7} \)[/tex] represents the square root of 7.
- Multiplying [tex]\( -2 \)[/tex] by [tex]\( \sqrt{7} \)[/tex] gives [tex]\( -2 \sqrt{7} \)[/tex].
- This expression is already in its simplest form since [tex]\( \sqrt{7} \)[/tex] cannot be simplified further.
- The simplified expression is [tex]\( -2 \sqrt{7} \)[/tex].
4. Expression 4: [tex]\( -2 \sqrt[3]{7} \)[/tex]
- The term [tex]\( \sqrt[3]{7} \)[/tex] represents the cube root of 7, which is also denoted as [tex]\( 7^{1/3} \)[/tex].
- Multiplying [tex]\( -2 \)[/tex] by [tex]\( \sqrt[3]{7} \)[/tex] results in [tex]\( -2 \sqrt[3]{7} \)[/tex].
- This expression is already in its simplest form since [tex]\( \sqrt[3]{7} = 7^{1/3} \)[/tex] cannot be simplified further.
- The simplified expression is [tex]\( -2 \sqrt[3]{7} \)[/tex], which can also be written as [tex]\( -2 \cdot 7^{1/3} \)[/tex].
So, the simplified versions of the given expressions are:
- [tex]\( 3 \sqrt{7} \)[/tex]
- [tex]\( -5 \sqrt[4]{7} \)[/tex] or [tex]\( -5 \cdot 7^{1/4} \)[/tex]
- [tex]\( -2 \sqrt{7} \)[/tex]
- [tex]\( -2 \sqrt[3]{7} \)[/tex] or [tex]\( -2 \cdot 7^{1/3} \)[/tex]
1. Expression 1: [tex]\( 3 \sqrt{7} \)[/tex]
- The term [tex]\( \sqrt{7} \)[/tex] represents the square root of 7.
- Multiplying [tex]\( 3 \)[/tex] by [tex]\( \sqrt{7} \)[/tex] gives [tex]\( 3 \sqrt{7} \)[/tex].
- This expression is already in its simplest form since [tex]\( \sqrt{7} \)[/tex] cannot be simplified further.
- The simplified expression is [tex]\( 3 \sqrt{7} \)[/tex].
2. Expression 2: [tex]\( -5 \sqrt[4]{7} \)[/tex]
- The term [tex]\( \sqrt[4]{7} \)[/tex] represents the fourth root of 7, which is also denoted as [tex]\( 7^{1/4} \)[/tex].
- Multiplying [tex]\( -5 \)[/tex] by [tex]\( \sqrt[4]{7} \)[/tex] results in [tex]\( -5 \sqrt[4]{7} \)[/tex].
- This expression is already in its simplest form since [tex]\( \sqrt[4]{7} = 7^{1/4} \)[/tex] cannot be simplified further.
- The simplified expression is [tex]\( -5 \sqrt[4]{7} \)[/tex], which can also be written as [tex]\( -5 \cdot 7^{1/4} \)[/tex].
3. Expression 3: [tex]\( -2 \sqrt{7} \)[/tex]
- The term [tex]\( \sqrt{7} \)[/tex] represents the square root of 7.
- Multiplying [tex]\( -2 \)[/tex] by [tex]\( \sqrt{7} \)[/tex] gives [tex]\( -2 \sqrt{7} \)[/tex].
- This expression is already in its simplest form since [tex]\( \sqrt{7} \)[/tex] cannot be simplified further.
- The simplified expression is [tex]\( -2 \sqrt{7} \)[/tex].
4. Expression 4: [tex]\( -2 \sqrt[3]{7} \)[/tex]
- The term [tex]\( \sqrt[3]{7} \)[/tex] represents the cube root of 7, which is also denoted as [tex]\( 7^{1/3} \)[/tex].
- Multiplying [tex]\( -2 \)[/tex] by [tex]\( \sqrt[3]{7} \)[/tex] results in [tex]\( -2 \sqrt[3]{7} \)[/tex].
- This expression is already in its simplest form since [tex]\( \sqrt[3]{7} = 7^{1/3} \)[/tex] cannot be simplified further.
- The simplified expression is [tex]\( -2 \sqrt[3]{7} \)[/tex], which can also be written as [tex]\( -2 \cdot 7^{1/3} \)[/tex].
So, the simplified versions of the given expressions are:
- [tex]\( 3 \sqrt{7} \)[/tex]
- [tex]\( -5 \sqrt[4]{7} \)[/tex] or [tex]\( -5 \cdot 7^{1/4} \)[/tex]
- [tex]\( -2 \sqrt{7} \)[/tex]
- [tex]\( -2 \sqrt[3]{7} \)[/tex] or [tex]\( -2 \cdot 7^{1/3} \)[/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.