Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve the equation [tex]\(\sin(90^\circ - x) = -\frac{\sqrt{3}}{2}\)[/tex], we can use the trigonometric identity [tex]\(\sin(90^\circ - x) = \cos(x)\)[/tex]. This transforms our equation into:
[tex]\[ \cos(x) = -\frac{\sqrt{3}}{2} \][/tex]
Next, we need to determine the angles [tex]\(x\)[/tex] where [tex]\(\cos(x) = -\frac{\sqrt{3}}{2}\)[/tex]. Recall that cosine is negative in the second and third quadrants of the unit circle.
First, find the reference angle where [tex]\(\cos(x) = \frac{\sqrt{3}}{2}\)[/tex]:
The reference angle for [tex]\(\cos(x) = \frac{\sqrt{3}}{2}\)[/tex] is [tex]\(30^\circ\)[/tex] because [tex]\(\cos(30^\circ) = \frac{\sqrt{3}}{2}\)[/tex].
Using the reference angle, we can find [tex]\(x\)[/tex] in the appropriate quadrants:
1. Second Quadrant:
- In the second quadrant, the cosine is negative, and the angle is given by:
[tex]\[ x = 180^\circ - \text{reference angle} = 180^\circ - 30^\circ = 150^\circ \][/tex]
2. Third Quadrant:
- In the third quadrant, the cosine is also negative, and the angle is given by:
[tex]\[ x = 180^\circ + \text{reference angle} = 180^\circ + 30^\circ = 210^\circ \][/tex]
Therefore, the values of [tex]\(x\)[/tex] that satisfy the equation [tex]\(\sin(90^\circ - x) = -\frac{\sqrt{3}}{2}\)[/tex] are:
[tex]\[ \boxed{150^\circ} \text{ and } \boxed{210^\circ} \][/tex]
So, the value of [tex]\(x\)[/tex] that satisfies the equation is [tex]\(\boxed{150^\circ \text{ and } 210^\circ} \because\)[/tex].
[tex]\[ \cos(x) = -\frac{\sqrt{3}}{2} \][/tex]
Next, we need to determine the angles [tex]\(x\)[/tex] where [tex]\(\cos(x) = -\frac{\sqrt{3}}{2}\)[/tex]. Recall that cosine is negative in the second and third quadrants of the unit circle.
First, find the reference angle where [tex]\(\cos(x) = \frac{\sqrt{3}}{2}\)[/tex]:
The reference angle for [tex]\(\cos(x) = \frac{\sqrt{3}}{2}\)[/tex] is [tex]\(30^\circ\)[/tex] because [tex]\(\cos(30^\circ) = \frac{\sqrt{3}}{2}\)[/tex].
Using the reference angle, we can find [tex]\(x\)[/tex] in the appropriate quadrants:
1. Second Quadrant:
- In the second quadrant, the cosine is negative, and the angle is given by:
[tex]\[ x = 180^\circ - \text{reference angle} = 180^\circ - 30^\circ = 150^\circ \][/tex]
2. Third Quadrant:
- In the third quadrant, the cosine is also negative, and the angle is given by:
[tex]\[ x = 180^\circ + \text{reference angle} = 180^\circ + 30^\circ = 210^\circ \][/tex]
Therefore, the values of [tex]\(x\)[/tex] that satisfy the equation [tex]\(\sin(90^\circ - x) = -\frac{\sqrt{3}}{2}\)[/tex] are:
[tex]\[ \boxed{150^\circ} \text{ and } \boxed{210^\circ} \][/tex]
So, the value of [tex]\(x\)[/tex] that satisfies the equation is [tex]\(\boxed{150^\circ \text{ and } 210^\circ} \because\)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.