At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve the equation [tex]\(\sin(90^\circ - x) = -\frac{\sqrt{3}}{2}\)[/tex], we can use the trigonometric identity [tex]\(\sin(90^\circ - x) = \cos(x)\)[/tex]. This transforms our equation into:
[tex]\[ \cos(x) = -\frac{\sqrt{3}}{2} \][/tex]
Next, we need to determine the angles [tex]\(x\)[/tex] where [tex]\(\cos(x) = -\frac{\sqrt{3}}{2}\)[/tex]. Recall that cosine is negative in the second and third quadrants of the unit circle.
First, find the reference angle where [tex]\(\cos(x) = \frac{\sqrt{3}}{2}\)[/tex]:
The reference angle for [tex]\(\cos(x) = \frac{\sqrt{3}}{2}\)[/tex] is [tex]\(30^\circ\)[/tex] because [tex]\(\cos(30^\circ) = \frac{\sqrt{3}}{2}\)[/tex].
Using the reference angle, we can find [tex]\(x\)[/tex] in the appropriate quadrants:
1. Second Quadrant:
- In the second quadrant, the cosine is negative, and the angle is given by:
[tex]\[ x = 180^\circ - \text{reference angle} = 180^\circ - 30^\circ = 150^\circ \][/tex]
2. Third Quadrant:
- In the third quadrant, the cosine is also negative, and the angle is given by:
[tex]\[ x = 180^\circ + \text{reference angle} = 180^\circ + 30^\circ = 210^\circ \][/tex]
Therefore, the values of [tex]\(x\)[/tex] that satisfy the equation [tex]\(\sin(90^\circ - x) = -\frac{\sqrt{3}}{2}\)[/tex] are:
[tex]\[ \boxed{150^\circ} \text{ and } \boxed{210^\circ} \][/tex]
So, the value of [tex]\(x\)[/tex] that satisfies the equation is [tex]\(\boxed{150^\circ \text{ and } 210^\circ} \because\)[/tex].
[tex]\[ \cos(x) = -\frac{\sqrt{3}}{2} \][/tex]
Next, we need to determine the angles [tex]\(x\)[/tex] where [tex]\(\cos(x) = -\frac{\sqrt{3}}{2}\)[/tex]. Recall that cosine is negative in the second and third quadrants of the unit circle.
First, find the reference angle where [tex]\(\cos(x) = \frac{\sqrt{3}}{2}\)[/tex]:
The reference angle for [tex]\(\cos(x) = \frac{\sqrt{3}}{2}\)[/tex] is [tex]\(30^\circ\)[/tex] because [tex]\(\cos(30^\circ) = \frac{\sqrt{3}}{2}\)[/tex].
Using the reference angle, we can find [tex]\(x\)[/tex] in the appropriate quadrants:
1. Second Quadrant:
- In the second quadrant, the cosine is negative, and the angle is given by:
[tex]\[ x = 180^\circ - \text{reference angle} = 180^\circ - 30^\circ = 150^\circ \][/tex]
2. Third Quadrant:
- In the third quadrant, the cosine is also negative, and the angle is given by:
[tex]\[ x = 180^\circ + \text{reference angle} = 180^\circ + 30^\circ = 210^\circ \][/tex]
Therefore, the values of [tex]\(x\)[/tex] that satisfy the equation [tex]\(\sin(90^\circ - x) = -\frac{\sqrt{3}}{2}\)[/tex] are:
[tex]\[ \boxed{150^\circ} \text{ and } \boxed{210^\circ} \][/tex]
So, the value of [tex]\(x\)[/tex] that satisfies the equation is [tex]\(\boxed{150^\circ \text{ and } 210^\circ} \because\)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.