Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine how many moles of water ([tex]\(H_2O\)[/tex]) are produced when 3.45 moles of potassium permanganate ([tex]\(KMnO_4\)[/tex]) react, follow these steps:
1. Write the balanced chemical equation:
[tex]\[ 2 KMnO_4 + 16 HCl \rightarrow 2 KCl + 2 MnCl_2 + 8 H_2O + 5 Cl_2 \][/tex]
2. Identify the stoichiometric coefficients:
From the balanced equation, the stoichiometric coefficient for [tex]\(KMnO_4\)[/tex] is 2 and for [tex]\(H_2O\)[/tex] is 8.
3. Set up the stoichiometric ratio:
According to the balanced equation, 2 moles of [tex]\(KMnO_4\)[/tex] produce 8 moles of [tex]\(H_2O\)[/tex].
4. Convert the given moles of [tex]\(KMnO_4\)[/tex] to moles of [tex]\(H_2O\)[/tex]:
Use the stoichiometric ratio from the balanced equation to find the moles of [tex]\(H_2O\)[/tex]:
[tex]\[ \text{Moles of } H_2O = \left(\frac{8 \text{ moles of } H_2O}{2 \text{ moles of } KMnO_4}\right) \times 3.45 \text{ moles of } KMnO_4 \][/tex]
5. Calculate the moles of [tex]\(H_2O\)[/tex]:
[tex]\[ \text{Moles of } H_2O = \left(\frac{8}{2}\right) \times 3.45 = 4 \times 3.45 = 13.8 \][/tex]
Therefore, 13.8 moles of water ([tex]\(H_2O\)[/tex]) are produced when 3.45 moles of [tex]\(KMnO_4\)[/tex] react. The result, given with 3 significant figures, is:
[tex]\[ 13.8 \, \text{moles } H_2O \][/tex]
1. Write the balanced chemical equation:
[tex]\[ 2 KMnO_4 + 16 HCl \rightarrow 2 KCl + 2 MnCl_2 + 8 H_2O + 5 Cl_2 \][/tex]
2. Identify the stoichiometric coefficients:
From the balanced equation, the stoichiometric coefficient for [tex]\(KMnO_4\)[/tex] is 2 and for [tex]\(H_2O\)[/tex] is 8.
3. Set up the stoichiometric ratio:
According to the balanced equation, 2 moles of [tex]\(KMnO_4\)[/tex] produce 8 moles of [tex]\(H_2O\)[/tex].
4. Convert the given moles of [tex]\(KMnO_4\)[/tex] to moles of [tex]\(H_2O\)[/tex]:
Use the stoichiometric ratio from the balanced equation to find the moles of [tex]\(H_2O\)[/tex]:
[tex]\[ \text{Moles of } H_2O = \left(\frac{8 \text{ moles of } H_2O}{2 \text{ moles of } KMnO_4}\right) \times 3.45 \text{ moles of } KMnO_4 \][/tex]
5. Calculate the moles of [tex]\(H_2O\)[/tex]:
[tex]\[ \text{Moles of } H_2O = \left(\frac{8}{2}\right) \times 3.45 = 4 \times 3.45 = 13.8 \][/tex]
Therefore, 13.8 moles of water ([tex]\(H_2O\)[/tex]) are produced when 3.45 moles of [tex]\(KMnO_4\)[/tex] react. The result, given with 3 significant figures, is:
[tex]\[ 13.8 \, \text{moles } H_2O \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.