Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine how many moles of water ([tex]\( \text{H}_2\text{O} \)[/tex]) are formed when 183.5 grams of barium hydroxide ([tex]\( \text{Ba(OH)}_2 \)[/tex]) react with excess hydrobromic acid ([tex]\( \text{HBr} \)[/tex]), we follow these steps:
1. Calculate the molar mass of barium hydroxide ([tex]\( \text{Ba(OH)}_2 \)[/tex]):
- Barium (Ba) has an atomic mass of approximately 137.34 g/mol.
- Oxygen (O) has an atomic mass of approximately 16.00 g/mol.
- Hydrogen (H) has an atomic mass of approximately 1.01 g/mol.
Therefore, the molar mass of [tex]\( \text{Ba(OH)}_2 \)[/tex] is:
[tex]\[ \text{Molar mass of Ba(OH)}_2 = 137.34 + 2(\text{1 oxygen} \times 16.00 + \text{1 hydrogen} \times 1.01) = 137.34 + 2 \times (16.00 + 1.01) = 137.34 + 34.00 = 171.34 \, \text{g/mol} \][/tex]
2. Convert the mass of barium hydroxide ([tex]\( \text{Ba(OH)}_2 \)[/tex]) to moles:
- Given mass of [tex]\( \text{Ba(OH)}_2 = 183.5 \, \text{g} \)[/tex]
- Molar mass of [tex]\( \text{Ba(OH)}_2 = 171.34 \, \text{g/mol} \)[/tex]
The number of moles of [tex]\( \text{Ba(OH)}_2 \)[/tex] is calculated by:
[tex]\[ \text{Moles of Ba(OH)}_2 = \frac{183.5 \, \text{g}}{171.34 \, \text{g/mol}} \approx 1.071 \, \text{mol} \][/tex]
3. Use the stoichiometric relationship from the balanced chemical equation:
- The balanced chemical equation is:
[tex]\[ 2 \, \text{HBr} + \text{Ba(OH)}_2 \rightarrow \text{BaBr}_2 + 2 \, \text{H}_2\text{O} \][/tex]
According to the balanced equation, 1 mole of [tex]\( \text{Ba(OH)}_2 \)[/tex] produces 2 moles of [tex]\( \text{H}_2\text{O} \)[/tex].
4. Calculate the moles of water ([tex]\( \text{H}_2\text{O} \)[/tex]) produced:
- We have [tex]\( 1.071 \, \text{moles of Ba(OH)}_2 \)[/tex].
- Therefore, the moles of water produced are:
[tex]\[ \text{Moles of H}_2\text{O} = 2 \times 1.071 \approx 2.142 \, \text{mol} \][/tex]
Hence, 2.142 moles of water ([tex]\( \text{H}_2\text{O} \)[/tex]) are formed when 183.5 g of [tex]\( \text{Ba(OH)}_2 \)[/tex] reacts with excess [tex]\( \text{HBr} \)[/tex].
1. Calculate the molar mass of barium hydroxide ([tex]\( \text{Ba(OH)}_2 \)[/tex]):
- Barium (Ba) has an atomic mass of approximately 137.34 g/mol.
- Oxygen (O) has an atomic mass of approximately 16.00 g/mol.
- Hydrogen (H) has an atomic mass of approximately 1.01 g/mol.
Therefore, the molar mass of [tex]\( \text{Ba(OH)}_2 \)[/tex] is:
[tex]\[ \text{Molar mass of Ba(OH)}_2 = 137.34 + 2(\text{1 oxygen} \times 16.00 + \text{1 hydrogen} \times 1.01) = 137.34 + 2 \times (16.00 + 1.01) = 137.34 + 34.00 = 171.34 \, \text{g/mol} \][/tex]
2. Convert the mass of barium hydroxide ([tex]\( \text{Ba(OH)}_2 \)[/tex]) to moles:
- Given mass of [tex]\( \text{Ba(OH)}_2 = 183.5 \, \text{g} \)[/tex]
- Molar mass of [tex]\( \text{Ba(OH)}_2 = 171.34 \, \text{g/mol} \)[/tex]
The number of moles of [tex]\( \text{Ba(OH)}_2 \)[/tex] is calculated by:
[tex]\[ \text{Moles of Ba(OH)}_2 = \frac{183.5 \, \text{g}}{171.34 \, \text{g/mol}} \approx 1.071 \, \text{mol} \][/tex]
3. Use the stoichiometric relationship from the balanced chemical equation:
- The balanced chemical equation is:
[tex]\[ 2 \, \text{HBr} + \text{Ba(OH)}_2 \rightarrow \text{BaBr}_2 + 2 \, \text{H}_2\text{O} \][/tex]
According to the balanced equation, 1 mole of [tex]\( \text{Ba(OH)}_2 \)[/tex] produces 2 moles of [tex]\( \text{H}_2\text{O} \)[/tex].
4. Calculate the moles of water ([tex]\( \text{H}_2\text{O} \)[/tex]) produced:
- We have [tex]\( 1.071 \, \text{moles of Ba(OH)}_2 \)[/tex].
- Therefore, the moles of water produced are:
[tex]\[ \text{Moles of H}_2\text{O} = 2 \times 1.071 \approx 2.142 \, \text{mol} \][/tex]
Hence, 2.142 moles of water ([tex]\( \text{H}_2\text{O} \)[/tex]) are formed when 183.5 g of [tex]\( \text{Ba(OH)}_2 \)[/tex] reacts with excess [tex]\( \text{HBr} \)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.