Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

The average daily temperature, [tex]t[/tex], in degrees Fahrenheit for a city as a function of the month of the year, [tex]m[/tex], can be modeled by the equation

[tex]t = 35 \cos \left(\frac{\pi}{6}(m+3)\right) + 55[/tex],

where [tex]m = 0[/tex] represents January 1, [tex]m = 1[/tex] represents February 1, [tex]m = 2[/tex] represents March 1, and so on.

Which equation also models this situation?

A. [tex]t = -35 \sin \left(\frac{\pi}{6} m\right) + 55[/tex]
B. [tex]t = -35 \sin \left(\frac{\pi}{6}(m+3)\right) + 55[/tex]
C. [tex]t = 35 \sin \left(\frac{\pi}{6} m\right) + 55[/tex]
D. [tex]t = 35 \sin \left(\frac{\pi}{6}(m+3)\right) + 55[/tex]

Sagot :

To determine which equation also models the average daily temperature, we start by analyzing the given equation for temperature [tex]\( t \)[/tex]:

[tex]\[ t = 35 \cos \left( \frac{\pi}{6}(m+3) \right) + 55 \][/tex]

We will examine each of the given options to see if any of them are equivalent to the above equation.

Option 1: [tex]\( t = -35 \sin \left( \frac{\pi}{6} m \right) + 55 \)[/tex]

Rewrite the given equation in a different form using trigonometric identities. We need to express it in terms of sine, knowing that cosine can be converted to sine using the identities:

[tex]\[ \cos x = \sin \left( \frac{\pi}{2} - x \right) \][/tex]

So,

[tex]\[ t = 35 \cos \left( \frac{\pi}{6}(m+3) \right) + 55 \][/tex]

Using the trigonometric identity:

[tex]\[ \cos \left( \frac{\pi}{6}(m+3) \right) = \sin \left( \frac{\pi}{2} - \frac{\pi}{6}(m+3) \right) \][/tex]

Simplify the argument:

[tex]\[ \cos \left( \frac{\pi}{6}(m+3) \right) = \sin \left( \frac{\pi}{2} - \left( \frac{\pi}{6}(m+3) \right) \right) = \sin \left( \frac{\pi}{2} - \frac{\pi}{6}m - \frac{3\pi}{6} \right) = \sin \left( \frac{\pi}{2} - \frac{\pi}{6}m - \frac{\pi}{2} \right) = \sin \left( -\frac{\pi}{6}m \right) \][/tex]

We know:

[tex]\[ \sin(-x) = -\sin(x) \][/tex]

Thus:

[tex]\[ \sin \left( -\frac{\pi}{6}m \right) = -\sin \left( \frac{\pi}{6}m \right) \][/tex]

We then rewrite the equation as:

[tex]\[ t = 35 \cdot (-\sin \left( \frac{\pi}{6}m \right)) + 55 = -35 \sin \left( \frac{\pi}{6}m \right) + 55 \][/tex]

This matches Option 1 perfectly.

Hence, the equation that also models the average daily temperature is:

[tex]\[ t = -35 \sin \left( \frac{\pi}{6} m \right) + 55 \][/tex]

So, the correct answer is:

[tex]\[ t = -35 \sin \left( \frac{\pi}{6} m \right) + 55 \][/tex]