Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used.

Match each equation with its solution set.
[tex]\[
\begin{array}{l}
a^2 - 9a + 14 = 0 \quad \{2, 7\} \\
a^2 + 9a + 14 = 0 \quad \{-2, -7\} \\
a^2 + 3a - 10 = 0 \quad \{-5, 2\} \\
a^2 + 5a - 14 = 0 \quad \{-7, 2\} \\
a^2 - 5a - 14 = 0 \quad \{7, -2\} \\
\end{array}
\][/tex]


Sagot :

Let's solve each quadratic equation step by step to find the correct solution sets.

1. Equation: [tex]\(a^2 - 9a + 14 = 0\)[/tex]

To solve this, we can factorize the quadratic expression:

[tex]\[ a^2 - 9a + 14 = (a - 7)(a - 2) = 0 \][/tex]

Setting each factor to zero gives us:

[tex]\[ a - 7 = 0 \quad \text{or} \quad a - 2 = 0 \][/tex]

Thus, the solutions are:

[tex]\[ a = 7 \quad \text{and} \quad a = 2 \][/tex]

Solution set: [tex]\(\{7, 2\}\)[/tex]

2. Equation: [tex]\(a^2 + 9a + 14 = 0\)[/tex]

To solve this, we can factorize the quadratic expression:

[tex]\[ a^2 + 9a + 14 = (a + 7)(a + 2) = 0 \][/tex]

Setting each factor to zero gives us:

[tex]\[ a + 7 = 0 \quad \text{or} \quad a + 2 = 0 \][/tex]

Thus, the solutions are:

[tex]\[ a = -7 \quad \text{and} \quad a = -2 \][/tex]

Solution set: [tex]\(\{-7, -2\}\)[/tex]

3. Equation: [tex]\(a^2 + 3a - 10 = 0\)[/tex]

To solve this, we can factorize the quadratic expression:

[tex]\[ a^2 + 3a - 10 = (a + 5)(a - 2) = 0 \][/tex]

Setting each factor to zero gives us:

[tex]\[ a + 5 = 0 \quad \text{or} \quad a - 2 = 0 \][/tex]

Thus, the solutions are:

[tex]\[ a = -5 \quad \text{and} \quad a = 2 \][/tex]

Solution set: [tex]\(\{2, -5\}\)[/tex]

4. Equation: [tex]\(a^2 + 5a - 14 = 0\)[/tex]

To solve this, we can factorize the quadratic expression:

[tex]\[ a^2 + 5a - 14 = (a + 7)(a - 2) = 0 \][/tex]

Setting each factor to zero gives us:

[tex]\[ a + 7 = 0 \quad \text{or} \quad a - 2 = 0 \][/tex]

Thus, the solutions are:

[tex]\[ a = -4 \quad \text{and} \quad a = 2 \][/tex]

Solution set: [tex]\(\{2, -4\}\)[/tex]

5. Equation: [tex]\(a^2 - 5a - 14 = 0\)[/tex]

To solve this, we can factorize the quadratic expression:

[tex]\[ a^2 - 5a - 14 = (a - 7)(a + 2) = 0 \][/tex]

Setting each factor to zero gives us:

[tex]\[ a - 7 = 0 \quad \text{or} \quad a + 2 = 0 \][/tex]

Thus, the solutions are:

[tex]\[ a = 7 \quad \text{and} \quad a = -2 \][/tex]

Solution set: [tex]\(\{7, -2\}\)[/tex]

So, the correct matches are:

1. [tex]\(a^2 - 9a + 14 = 0 \quad \longrightarrow \quad \{7, 2\}\)[/tex]
2. [tex]\(a^2 + 9a + 14 = 0 \quad \longrightarrow \quad \{-7, -2\}\)[/tex]
3. [tex]\(a^2 + 3a - 10 = 0 \quad \longrightarrow \quad \{2, -5\}\)[/tex]
4. [tex]\(a^2 + 5a - 14 = 0 \quad \longrightarrow \quad \{2, -4\}\)[/tex]
5. [tex]\(a^2 - 5a - 14 = 0 \quad \longrightarrow \quad \{7, -2\}\)[/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.