Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine whether the function [tex]\( F(x) = \log_{0.75} x \)[/tex] is decreasing or not, we need to consider the properties of logarithmic functions and their bases.
1. Understanding Logarithmic Functions:
A logarithmic function [tex]\( \log_a(x) \)[/tex] has different behavior based on the base [tex]\(a\)[/tex]:
- If [tex]\( a > 1 \)[/tex], the function [tex]\( \log_a(x) \)[/tex] is increasing.
- If [tex]\( 0 < a < 1 \)[/tex], the function [tex]\( \log_a(x) \)[/tex] is decreasing.
2. Identify the Base of the Function:
In our given function [tex]\( F(x) = \log_{0.75} x \)[/tex], the base of the logarithm is [tex]\( 0.75 \)[/tex].
3. Analyze the Base:
The base [tex]\( 0.75 \)[/tex] is less than 1 but greater than 0, i.e., [tex]\( 0 < 0.75 < 1 \)[/tex].
4. Conclusion on Monotonicity:
Since the base [tex]\( 0.75 \)[/tex] is in the interval [tex]\( (0, 1) \)[/tex], according to the properties of logarithmic functions:
- [tex]\( F(x) = \log_{0.75} x \)[/tex] is a decreasing function.
Therefore, the statement "The function [tex]\( F(x)=\log_{0.75} x \)[/tex] is decreasing" is true.
Answer: A. True
1. Understanding Logarithmic Functions:
A logarithmic function [tex]\( \log_a(x) \)[/tex] has different behavior based on the base [tex]\(a\)[/tex]:
- If [tex]\( a > 1 \)[/tex], the function [tex]\( \log_a(x) \)[/tex] is increasing.
- If [tex]\( 0 < a < 1 \)[/tex], the function [tex]\( \log_a(x) \)[/tex] is decreasing.
2. Identify the Base of the Function:
In our given function [tex]\( F(x) = \log_{0.75} x \)[/tex], the base of the logarithm is [tex]\( 0.75 \)[/tex].
3. Analyze the Base:
The base [tex]\( 0.75 \)[/tex] is less than 1 but greater than 0, i.e., [tex]\( 0 < 0.75 < 1 \)[/tex].
4. Conclusion on Monotonicity:
Since the base [tex]\( 0.75 \)[/tex] is in the interval [tex]\( (0, 1) \)[/tex], according to the properties of logarithmic functions:
- [tex]\( F(x) = \log_{0.75} x \)[/tex] is a decreasing function.
Therefore, the statement "The function [tex]\( F(x)=\log_{0.75} x \)[/tex] is decreasing" is true.
Answer: A. True
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.