Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Ask your questions and receive precise answers from experienced professionals across different disciplines. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine whether the function [tex]\( F(x) = \log_{0.75} x \)[/tex] is decreasing or not, we need to consider the properties of logarithmic functions and their bases.
1. Understanding Logarithmic Functions:
A logarithmic function [tex]\( \log_a(x) \)[/tex] has different behavior based on the base [tex]\(a\)[/tex]:
- If [tex]\( a > 1 \)[/tex], the function [tex]\( \log_a(x) \)[/tex] is increasing.
- If [tex]\( 0 < a < 1 \)[/tex], the function [tex]\( \log_a(x) \)[/tex] is decreasing.
2. Identify the Base of the Function:
In our given function [tex]\( F(x) = \log_{0.75} x \)[/tex], the base of the logarithm is [tex]\( 0.75 \)[/tex].
3. Analyze the Base:
The base [tex]\( 0.75 \)[/tex] is less than 1 but greater than 0, i.e., [tex]\( 0 < 0.75 < 1 \)[/tex].
4. Conclusion on Monotonicity:
Since the base [tex]\( 0.75 \)[/tex] is in the interval [tex]\( (0, 1) \)[/tex], according to the properties of logarithmic functions:
- [tex]\( F(x) = \log_{0.75} x \)[/tex] is a decreasing function.
Therefore, the statement "The function [tex]\( F(x)=\log_{0.75} x \)[/tex] is decreasing" is true.
Answer: A. True
1. Understanding Logarithmic Functions:
A logarithmic function [tex]\( \log_a(x) \)[/tex] has different behavior based on the base [tex]\(a\)[/tex]:
- If [tex]\( a > 1 \)[/tex], the function [tex]\( \log_a(x) \)[/tex] is increasing.
- If [tex]\( 0 < a < 1 \)[/tex], the function [tex]\( \log_a(x) \)[/tex] is decreasing.
2. Identify the Base of the Function:
In our given function [tex]\( F(x) = \log_{0.75} x \)[/tex], the base of the logarithm is [tex]\( 0.75 \)[/tex].
3. Analyze the Base:
The base [tex]\( 0.75 \)[/tex] is less than 1 but greater than 0, i.e., [tex]\( 0 < 0.75 < 1 \)[/tex].
4. Conclusion on Monotonicity:
Since the base [tex]\( 0.75 \)[/tex] is in the interval [tex]\( (0, 1) \)[/tex], according to the properties of logarithmic functions:
- [tex]\( F(x) = \log_{0.75} x \)[/tex] is a decreasing function.
Therefore, the statement "The function [tex]\( F(x)=\log_{0.75} x \)[/tex] is decreasing" is true.
Answer: A. True
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.