Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Solve for [tex]\( x \)[/tex].
[tex]\[ 3x = 6x - 2 \][/tex]




Calculate the enthalpy of each step and the enthalpy of the overall reaction for the bromination of isobutane, a two-step reaction.

Using the table of bond dissociation energies for [tex]\( A - B \longrightarrow A + B \)[/tex]:
[tex]\[
\begin{tabular}{|c|c|}
\hline
\text{Bond broken} & \(\Delta H \, (kJ/mol)\) \\
\hline
H - H & 436 \\
\hline
Br - Br & 194 \\
\hline
H - Br & 366 \\
\hline
(CH_3)_3C - H & 400 \\
\hline
(CH_3)_3C - Br & 292 \\
\hline
\end{tabular}
\][/tex]

Step 1: [tex]\( \Delta H = \square \)[/tex]


Sagot :

Certainly! Let's go through these calculations step-by-step.

For step 1: The reaction involves the following bonds being broken and formed:

[tex]\[ \text{(CH}_3)_3\text{C-H} + \text{Br-Br} \rightarrow \text{(CH}_3)_3\text{C.} + \text{Br.} \][/tex]

Bonds Broken:
1. One [tex]\((\text{CH}_3)_3\text{C-H}\)[/tex] bond
2. One [tex]\(\text{Br-Br}\)[/tex] bond

The bond dissociation energies for these bonds from the table are:
[tex]\[ \begin{align*} (\text{CH}_3)_3\text{C-H} & : 400 \, \text{kJ/mol} \\ \text{Br-Br} & : 194 \, \text{kJ/mol} \end{align*} \][/tex]

Adding these two values gives the total bond energy broken in step 1:
[tex]\[ \text{Energy of bonds broken in Step 1} = 400 \, \text{kJ/mol} + 194 \, \text{kJ/mol} = 594 \, \text{kJ/mol} \][/tex]

Bonds Formed:
1. One [tex]\((\text{CH}_3)_3\text{C-Br}\)[/tex] bond
2. One [tex]\(\text{H-Br}\)[/tex] bond

The bond dissociation energies for these bonds from the table are:
[tex]\[ \begin{align*} (\text{CH}_3)_3\text{C-Br} & : 292 \, \text{kJ/mol} \\ \text{H-Br} & : 366 \, \text{kJ/mol} \end{align*} \][/tex]

Adding these two values gives the total bond energy formed in step 1:
[tex]\[ \text{Energy of bonds formed in Step 1} = 292 \, \text{kJ/mol} + 366 \, \text{kJ/mol} = 658 \, \text{kJ/mol} \][/tex]

Enthalpy change (ΔH) for Step 1:
The enthalpy change for the reaction is calculated by subtracting the energy of the bonds formed from the energy of the bonds broken:

[tex]\[ \Delta H_{\text{Step 1}} = \text{Energy of bonds broken} - \text{Energy of bonds formed} \][/tex]

Substitute the values:
[tex]\[ \Delta H_{\text{Step 1}} = 594 \, \text{kJ/mol} - 658 \, \text{kJ/mol} = -64 \, \text{kJ/mol} \][/tex]

Thus, the enthalpy change for step 1 ([tex]\(\Delta H_{\text{Step 1}}\)[/tex]) is [tex]\(-64 \, \text{kJ/mol}\)[/tex].

Note: Since the question does not provide details about Step 2, we focus on Step 1 only. To determine the enthalpy of the overall reaction, details of Step 2 would be needed.

In summary:
[tex]\[ \Delta H_{\text{Step 1}} = -64 \, \text{kJ/mol} \][/tex]