Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Certainly! Let's go through these calculations step-by-step.
For step 1: The reaction involves the following bonds being broken and formed:
[tex]\[ \text{(CH}_3)_3\text{C-H} + \text{Br-Br} \rightarrow \text{(CH}_3)_3\text{C.} + \text{Br.} \][/tex]
Bonds Broken:
1. One [tex]\((\text{CH}_3)_3\text{C-H}\)[/tex] bond
2. One [tex]\(\text{Br-Br}\)[/tex] bond
The bond dissociation energies for these bonds from the table are:
[tex]\[ \begin{align*} (\text{CH}_3)_3\text{C-H} & : 400 \, \text{kJ/mol} \\ \text{Br-Br} & : 194 \, \text{kJ/mol} \end{align*} \][/tex]
Adding these two values gives the total bond energy broken in step 1:
[tex]\[ \text{Energy of bonds broken in Step 1} = 400 \, \text{kJ/mol} + 194 \, \text{kJ/mol} = 594 \, \text{kJ/mol} \][/tex]
Bonds Formed:
1. One [tex]\((\text{CH}_3)_3\text{C-Br}\)[/tex] bond
2. One [tex]\(\text{H-Br}\)[/tex] bond
The bond dissociation energies for these bonds from the table are:
[tex]\[ \begin{align*} (\text{CH}_3)_3\text{C-Br} & : 292 \, \text{kJ/mol} \\ \text{H-Br} & : 366 \, \text{kJ/mol} \end{align*} \][/tex]
Adding these two values gives the total bond energy formed in step 1:
[tex]\[ \text{Energy of bonds formed in Step 1} = 292 \, \text{kJ/mol} + 366 \, \text{kJ/mol} = 658 \, \text{kJ/mol} \][/tex]
Enthalpy change (ΔH) for Step 1:
The enthalpy change for the reaction is calculated by subtracting the energy of the bonds formed from the energy of the bonds broken:
[tex]\[ \Delta H_{\text{Step 1}} = \text{Energy of bonds broken} - \text{Energy of bonds formed} \][/tex]
Substitute the values:
[tex]\[ \Delta H_{\text{Step 1}} = 594 \, \text{kJ/mol} - 658 \, \text{kJ/mol} = -64 \, \text{kJ/mol} \][/tex]
Thus, the enthalpy change for step 1 ([tex]\(\Delta H_{\text{Step 1}}\)[/tex]) is [tex]\(-64 \, \text{kJ/mol}\)[/tex].
Note: Since the question does not provide details about Step 2, we focus on Step 1 only. To determine the enthalpy of the overall reaction, details of Step 2 would be needed.
In summary:
[tex]\[ \Delta H_{\text{Step 1}} = -64 \, \text{kJ/mol} \][/tex]
For step 1: The reaction involves the following bonds being broken and formed:
[tex]\[ \text{(CH}_3)_3\text{C-H} + \text{Br-Br} \rightarrow \text{(CH}_3)_3\text{C.} + \text{Br.} \][/tex]
Bonds Broken:
1. One [tex]\((\text{CH}_3)_3\text{C-H}\)[/tex] bond
2. One [tex]\(\text{Br-Br}\)[/tex] bond
The bond dissociation energies for these bonds from the table are:
[tex]\[ \begin{align*} (\text{CH}_3)_3\text{C-H} & : 400 \, \text{kJ/mol} \\ \text{Br-Br} & : 194 \, \text{kJ/mol} \end{align*} \][/tex]
Adding these two values gives the total bond energy broken in step 1:
[tex]\[ \text{Energy of bonds broken in Step 1} = 400 \, \text{kJ/mol} + 194 \, \text{kJ/mol} = 594 \, \text{kJ/mol} \][/tex]
Bonds Formed:
1. One [tex]\((\text{CH}_3)_3\text{C-Br}\)[/tex] bond
2. One [tex]\(\text{H-Br}\)[/tex] bond
The bond dissociation energies for these bonds from the table are:
[tex]\[ \begin{align*} (\text{CH}_3)_3\text{C-Br} & : 292 \, \text{kJ/mol} \\ \text{H-Br} & : 366 \, \text{kJ/mol} \end{align*} \][/tex]
Adding these two values gives the total bond energy formed in step 1:
[tex]\[ \text{Energy of bonds formed in Step 1} = 292 \, \text{kJ/mol} + 366 \, \text{kJ/mol} = 658 \, \text{kJ/mol} \][/tex]
Enthalpy change (ΔH) for Step 1:
The enthalpy change for the reaction is calculated by subtracting the energy of the bonds formed from the energy of the bonds broken:
[tex]\[ \Delta H_{\text{Step 1}} = \text{Energy of bonds broken} - \text{Energy of bonds formed} \][/tex]
Substitute the values:
[tex]\[ \Delta H_{\text{Step 1}} = 594 \, \text{kJ/mol} - 658 \, \text{kJ/mol} = -64 \, \text{kJ/mol} \][/tex]
Thus, the enthalpy change for step 1 ([tex]\(\Delta H_{\text{Step 1}}\)[/tex]) is [tex]\(-64 \, \text{kJ/mol}\)[/tex].
Note: Since the question does not provide details about Step 2, we focus on Step 1 only. To determine the enthalpy of the overall reaction, details of Step 2 would be needed.
In summary:
[tex]\[ \Delta H_{\text{Step 1}} = -64 \, \text{kJ/mol} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.