Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Certainly! Let's go through these calculations step-by-step.
For step 1: The reaction involves the following bonds being broken and formed:
[tex]\[ \text{(CH}_3)_3\text{C-H} + \text{Br-Br} \rightarrow \text{(CH}_3)_3\text{C.} + \text{Br.} \][/tex]
Bonds Broken:
1. One [tex]\((\text{CH}_3)_3\text{C-H}\)[/tex] bond
2. One [tex]\(\text{Br-Br}\)[/tex] bond
The bond dissociation energies for these bonds from the table are:
[tex]\[ \begin{align*} (\text{CH}_3)_3\text{C-H} & : 400 \, \text{kJ/mol} \\ \text{Br-Br} & : 194 \, \text{kJ/mol} \end{align*} \][/tex]
Adding these two values gives the total bond energy broken in step 1:
[tex]\[ \text{Energy of bonds broken in Step 1} = 400 \, \text{kJ/mol} + 194 \, \text{kJ/mol} = 594 \, \text{kJ/mol} \][/tex]
Bonds Formed:
1. One [tex]\((\text{CH}_3)_3\text{C-Br}\)[/tex] bond
2. One [tex]\(\text{H-Br}\)[/tex] bond
The bond dissociation energies for these bonds from the table are:
[tex]\[ \begin{align*} (\text{CH}_3)_3\text{C-Br} & : 292 \, \text{kJ/mol} \\ \text{H-Br} & : 366 \, \text{kJ/mol} \end{align*} \][/tex]
Adding these two values gives the total bond energy formed in step 1:
[tex]\[ \text{Energy of bonds formed in Step 1} = 292 \, \text{kJ/mol} + 366 \, \text{kJ/mol} = 658 \, \text{kJ/mol} \][/tex]
Enthalpy change (ΔH) for Step 1:
The enthalpy change for the reaction is calculated by subtracting the energy of the bonds formed from the energy of the bonds broken:
[tex]\[ \Delta H_{\text{Step 1}} = \text{Energy of bonds broken} - \text{Energy of bonds formed} \][/tex]
Substitute the values:
[tex]\[ \Delta H_{\text{Step 1}} = 594 \, \text{kJ/mol} - 658 \, \text{kJ/mol} = -64 \, \text{kJ/mol} \][/tex]
Thus, the enthalpy change for step 1 ([tex]\(\Delta H_{\text{Step 1}}\)[/tex]) is [tex]\(-64 \, \text{kJ/mol}\)[/tex].
Note: Since the question does not provide details about Step 2, we focus on Step 1 only. To determine the enthalpy of the overall reaction, details of Step 2 would be needed.
In summary:
[tex]\[ \Delta H_{\text{Step 1}} = -64 \, \text{kJ/mol} \][/tex]
For step 1: The reaction involves the following bonds being broken and formed:
[tex]\[ \text{(CH}_3)_3\text{C-H} + \text{Br-Br} \rightarrow \text{(CH}_3)_3\text{C.} + \text{Br.} \][/tex]
Bonds Broken:
1. One [tex]\((\text{CH}_3)_3\text{C-H}\)[/tex] bond
2. One [tex]\(\text{Br-Br}\)[/tex] bond
The bond dissociation energies for these bonds from the table are:
[tex]\[ \begin{align*} (\text{CH}_3)_3\text{C-H} & : 400 \, \text{kJ/mol} \\ \text{Br-Br} & : 194 \, \text{kJ/mol} \end{align*} \][/tex]
Adding these two values gives the total bond energy broken in step 1:
[tex]\[ \text{Energy of bonds broken in Step 1} = 400 \, \text{kJ/mol} + 194 \, \text{kJ/mol} = 594 \, \text{kJ/mol} \][/tex]
Bonds Formed:
1. One [tex]\((\text{CH}_3)_3\text{C-Br}\)[/tex] bond
2. One [tex]\(\text{H-Br}\)[/tex] bond
The bond dissociation energies for these bonds from the table are:
[tex]\[ \begin{align*} (\text{CH}_3)_3\text{C-Br} & : 292 \, \text{kJ/mol} \\ \text{H-Br} & : 366 \, \text{kJ/mol} \end{align*} \][/tex]
Adding these two values gives the total bond energy formed in step 1:
[tex]\[ \text{Energy of bonds formed in Step 1} = 292 \, \text{kJ/mol} + 366 \, \text{kJ/mol} = 658 \, \text{kJ/mol} \][/tex]
Enthalpy change (ΔH) for Step 1:
The enthalpy change for the reaction is calculated by subtracting the energy of the bonds formed from the energy of the bonds broken:
[tex]\[ \Delta H_{\text{Step 1}} = \text{Energy of bonds broken} - \text{Energy of bonds formed} \][/tex]
Substitute the values:
[tex]\[ \Delta H_{\text{Step 1}} = 594 \, \text{kJ/mol} - 658 \, \text{kJ/mol} = -64 \, \text{kJ/mol} \][/tex]
Thus, the enthalpy change for step 1 ([tex]\(\Delta H_{\text{Step 1}}\)[/tex]) is [tex]\(-64 \, \text{kJ/mol}\)[/tex].
Note: Since the question does not provide details about Step 2, we focus on Step 1 only. To determine the enthalpy of the overall reaction, details of Step 2 would be needed.
In summary:
[tex]\[ \Delta H_{\text{Step 1}} = -64 \, \text{kJ/mol} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.