Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Certainly! Let's go through these calculations step-by-step.
For step 1: The reaction involves the following bonds being broken and formed:
[tex]\[ \text{(CH}_3)_3\text{C-H} + \text{Br-Br} \rightarrow \text{(CH}_3)_3\text{C.} + \text{Br.} \][/tex]
Bonds Broken:
1. One [tex]\((\text{CH}_3)_3\text{C-H}\)[/tex] bond
2. One [tex]\(\text{Br-Br}\)[/tex] bond
The bond dissociation energies for these bonds from the table are:
[tex]\[ \begin{align*} (\text{CH}_3)_3\text{C-H} & : 400 \, \text{kJ/mol} \\ \text{Br-Br} & : 194 \, \text{kJ/mol} \end{align*} \][/tex]
Adding these two values gives the total bond energy broken in step 1:
[tex]\[ \text{Energy of bonds broken in Step 1} = 400 \, \text{kJ/mol} + 194 \, \text{kJ/mol} = 594 \, \text{kJ/mol} \][/tex]
Bonds Formed:
1. One [tex]\((\text{CH}_3)_3\text{C-Br}\)[/tex] bond
2. One [tex]\(\text{H-Br}\)[/tex] bond
The bond dissociation energies for these bonds from the table are:
[tex]\[ \begin{align*} (\text{CH}_3)_3\text{C-Br} & : 292 \, \text{kJ/mol} \\ \text{H-Br} & : 366 \, \text{kJ/mol} \end{align*} \][/tex]
Adding these two values gives the total bond energy formed in step 1:
[tex]\[ \text{Energy of bonds formed in Step 1} = 292 \, \text{kJ/mol} + 366 \, \text{kJ/mol} = 658 \, \text{kJ/mol} \][/tex]
Enthalpy change (ΔH) for Step 1:
The enthalpy change for the reaction is calculated by subtracting the energy of the bonds formed from the energy of the bonds broken:
[tex]\[ \Delta H_{\text{Step 1}} = \text{Energy of bonds broken} - \text{Energy of bonds formed} \][/tex]
Substitute the values:
[tex]\[ \Delta H_{\text{Step 1}} = 594 \, \text{kJ/mol} - 658 \, \text{kJ/mol} = -64 \, \text{kJ/mol} \][/tex]
Thus, the enthalpy change for step 1 ([tex]\(\Delta H_{\text{Step 1}}\)[/tex]) is [tex]\(-64 \, \text{kJ/mol}\)[/tex].
Note: Since the question does not provide details about Step 2, we focus on Step 1 only. To determine the enthalpy of the overall reaction, details of Step 2 would be needed.
In summary:
[tex]\[ \Delta H_{\text{Step 1}} = -64 \, \text{kJ/mol} \][/tex]
For step 1: The reaction involves the following bonds being broken and formed:
[tex]\[ \text{(CH}_3)_3\text{C-H} + \text{Br-Br} \rightarrow \text{(CH}_3)_3\text{C.} + \text{Br.} \][/tex]
Bonds Broken:
1. One [tex]\((\text{CH}_3)_3\text{C-H}\)[/tex] bond
2. One [tex]\(\text{Br-Br}\)[/tex] bond
The bond dissociation energies for these bonds from the table are:
[tex]\[ \begin{align*} (\text{CH}_3)_3\text{C-H} & : 400 \, \text{kJ/mol} \\ \text{Br-Br} & : 194 \, \text{kJ/mol} \end{align*} \][/tex]
Adding these two values gives the total bond energy broken in step 1:
[tex]\[ \text{Energy of bonds broken in Step 1} = 400 \, \text{kJ/mol} + 194 \, \text{kJ/mol} = 594 \, \text{kJ/mol} \][/tex]
Bonds Formed:
1. One [tex]\((\text{CH}_3)_3\text{C-Br}\)[/tex] bond
2. One [tex]\(\text{H-Br}\)[/tex] bond
The bond dissociation energies for these bonds from the table are:
[tex]\[ \begin{align*} (\text{CH}_3)_3\text{C-Br} & : 292 \, \text{kJ/mol} \\ \text{H-Br} & : 366 \, \text{kJ/mol} \end{align*} \][/tex]
Adding these two values gives the total bond energy formed in step 1:
[tex]\[ \text{Energy of bonds formed in Step 1} = 292 \, \text{kJ/mol} + 366 \, \text{kJ/mol} = 658 \, \text{kJ/mol} \][/tex]
Enthalpy change (ΔH) for Step 1:
The enthalpy change for the reaction is calculated by subtracting the energy of the bonds formed from the energy of the bonds broken:
[tex]\[ \Delta H_{\text{Step 1}} = \text{Energy of bonds broken} - \text{Energy of bonds formed} \][/tex]
Substitute the values:
[tex]\[ \Delta H_{\text{Step 1}} = 594 \, \text{kJ/mol} - 658 \, \text{kJ/mol} = -64 \, \text{kJ/mol} \][/tex]
Thus, the enthalpy change for step 1 ([tex]\(\Delta H_{\text{Step 1}}\)[/tex]) is [tex]\(-64 \, \text{kJ/mol}\)[/tex].
Note: Since the question does not provide details about Step 2, we focus on Step 1 only. To determine the enthalpy of the overall reaction, details of Step 2 would be needed.
In summary:
[tex]\[ \Delta H_{\text{Step 1}} = -64 \, \text{kJ/mol} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.