Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

The function [tex][tex]$F(x) = \log_5 x$[/tex][/tex] is decreasing.

A. True
B. False


Sagot :

To determine whether the function [tex]\( F(x) = \log_5{x} \)[/tex] is decreasing, we need to understand the properties of logarithmic functions, particularly those with a base greater than 1.

1. Definition of a Logarithmic Function with Base [tex]\( 5 \)[/tex]:
The function [tex]\( F(x) = \log_5{x} \)[/tex] represents the logarithm of [tex]\( x \)[/tex] with base 5. This can be rewritten using the fact that logarithms and exponentials are inverses: [tex]\( \log_b{x} = y \)[/tex] if and only if [tex]\( b^y = x \)[/tex].

2. Behavior of Logarithms with Base Greater than 1:
A fundamental property of logarithms is that if the base [tex]\( b \)[/tex] is greater than 1, then the logarithmic function [tex]\( \log_b{x} \)[/tex] is an increasing function. That means as [tex]\( x \)[/tex] increases, [tex]\( \log_b{x} \)[/tex] also increases.

3. Visualization:
If we were to graph [tex]\( F(x) = \log_5{x} \)[/tex], we would see that it rises from [tex]\( -\infty \)[/tex] to [tex]\( +\infty \)[/tex] as [tex]\( x \)[/tex] increases from 0 to [tex]\( +\infty \)[/tex]. This confirms that [tex]\( F(x) \)[/tex] is an increasing function.

4. Conclusion:
Since [tex]\( F(x) = \log_5{x} \)[/tex] is increasing for bases greater than 1, the statement that the function [tex]\( F(x) = \log_5{x} \)[/tex] is decreasing is false.

Thus, the correct answer is:

B. False