Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To write a polynomial in standard form, we need to arrange its terms in descending order according to their degrees. The degree of a term is indicated by the highest power of the variable [tex]\( x \)[/tex] in that term.
Given polynomial:
[tex]\[ \frac{x^2}{2} - 3x + 4x^3 + 6 \][/tex]
Let's identify the degree of each term:
- [tex]\(4x^3\)[/tex] has a degree of 3.
- [tex]\(\frac{x^2}{2}\)[/tex] has a degree of 2.
- [tex]\(-3x\)[/tex] has a degree of 1.
- [tex]\(6\)[/tex] is a constant term with a degree of 0.
Now, we order these terms from the highest degree to the lowest degree:
1. The term with degree 3: [tex]\( 4x^3 \)[/tex]
2. The term with degree 2: [tex]\(\frac{x^2}{2}\)[/tex]
3. The term with degree 1: [tex]\(-3x\)[/tex]
4. The constant term (degree 0): [tex]\( 6 \)[/tex]
Therefore, the polynomial in standard form is:
[tex]\[ 4x^3 + \frac{x^2}{2} - 3x + 6 \][/tex]
Now, let's match this expression with the options given:
1. [tex]\(6 + \frac{x^2}{2} - 3x + 4x^3\)[/tex] is not in the correct order.
2. [tex]\(4x^3 + \frac{x^2}{2} - 3x + 6\)[/tex] matches our polynomial in standard form.
3. [tex]\(-3x + 4x^3 + 6 + \frac{x^2}{2}\)[/tex] is not in the correct order.
4. [tex]\(\frac{x^2}{2} + 4x^3 - 3x + 6\)[/tex] is not in the correct order.
The correct choice is:
[tex]\[ \boxed{4x^3 + \frac{x^2}{2} - 3x + 6} \][/tex]
Given polynomial:
[tex]\[ \frac{x^2}{2} - 3x + 4x^3 + 6 \][/tex]
Let's identify the degree of each term:
- [tex]\(4x^3\)[/tex] has a degree of 3.
- [tex]\(\frac{x^2}{2}\)[/tex] has a degree of 2.
- [tex]\(-3x\)[/tex] has a degree of 1.
- [tex]\(6\)[/tex] is a constant term with a degree of 0.
Now, we order these terms from the highest degree to the lowest degree:
1. The term with degree 3: [tex]\( 4x^3 \)[/tex]
2. The term with degree 2: [tex]\(\frac{x^2}{2}\)[/tex]
3. The term with degree 1: [tex]\(-3x\)[/tex]
4. The constant term (degree 0): [tex]\( 6 \)[/tex]
Therefore, the polynomial in standard form is:
[tex]\[ 4x^3 + \frac{x^2}{2} - 3x + 6 \][/tex]
Now, let's match this expression with the options given:
1. [tex]\(6 + \frac{x^2}{2} - 3x + 4x^3\)[/tex] is not in the correct order.
2. [tex]\(4x^3 + \frac{x^2}{2} - 3x + 6\)[/tex] matches our polynomial in standard form.
3. [tex]\(-3x + 4x^3 + 6 + \frac{x^2}{2}\)[/tex] is not in the correct order.
4. [tex]\(\frac{x^2}{2} + 4x^3 - 3x + 6\)[/tex] is not in the correct order.
The correct choice is:
[tex]\[ \boxed{4x^3 + \frac{x^2}{2} - 3x + 6} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.