Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the polynomial written in standard form, we must organize the given terms by the degree of [tex]\(x\)[/tex] from highest to lowest. The degree of a term is determined by the sum of the exponents of the variables in that term.
Let's start by identifying the degrees of each term in the polynomials provided:
1. [tex]\(8 x^2 y^2\)[/tex]: The sum of exponents is [tex]\(2 + 2 = 4\)[/tex].
2. [tex]\(-3 x^3 y\)[/tex]: The sum of exponents is [tex]\(3 + 1 = 4\)[/tex].
3. [tex]\(4 x^4\)[/tex]: The sum of exponents is [tex]\(4\)[/tex].
4. [tex]\(-7 x y^3\)[/tex]: The sum of exponents is [tex]\(1 + 3 = 4\)[/tex].
Since all terms have the same degree, we can focus on organizing them consistently in the following way: First, by the highest degree of [tex]\(x\)[/tex] and second, by any remaining variables consistently.
Now let's determine the order for each polynomial provided:
1. [tex]\(8 x^2 y^2-3 x^3 y+4 x^4-7 x y^3\)[/tex]
- Ordering by degrees: [tex]\(4 x^4\)[/tex], [tex]\(-3 x^3 y\)[/tex], [tex]\(8 x^2 y^2\)[/tex], [tex]\(-7 x y^3\)[/tex]
2. [tex]\(4 x^4-3 x^3 y+8 x^2 y^2-7 x y^3\)[/tex]
- This polynomial is correctly ordered: [tex]\(4 x^4\)[/tex], [tex]\(-3 x^3 y\)[/tex], [tex]\(8 x^2 y^2\)[/tex], [tex]\(-7 x y^3\)[/tex]
3. [tex]\(4 x^4-7 x y^3-3 x^3 y+8 x^2 y^2\)[/tex]
- The order is not consistent.
4. [tex]\(4 x^4+8 x^2 y^2-3 x^3 y-7 x y^3\)[/tex]
- The order is not correct since [tex]\(8 x^2 y^2\)[/tex] appears before [tex]\(-3 x^3 y\)[/tex].
5. [tex]\(-7 x y^3-3 x^3 y+8 x^2 y^2+4 x^4\)[/tex]
- The order is not correct since it starts with [tex]\(-7 x y^3\)[/tex] instead of [tex]\(4 x^4\)[/tex].
Examining all the options, it is clear that the polynomial [tex]\(4 x^4-3 x^3 y+8 x^2 y^2-7 x y^3\)[/tex] is in standard form with terms ordered by the degree of [tex]\(x\)[/tex] from highest to lowest and then by systematically by any remaining variables.
Therefore, the polynomial in standard form is:
[tex]\[ \boxed{4 x^4-3 x^3 y+8 x^2 y^2-7 x y^3} \][/tex]
Let's start by identifying the degrees of each term in the polynomials provided:
1. [tex]\(8 x^2 y^2\)[/tex]: The sum of exponents is [tex]\(2 + 2 = 4\)[/tex].
2. [tex]\(-3 x^3 y\)[/tex]: The sum of exponents is [tex]\(3 + 1 = 4\)[/tex].
3. [tex]\(4 x^4\)[/tex]: The sum of exponents is [tex]\(4\)[/tex].
4. [tex]\(-7 x y^3\)[/tex]: The sum of exponents is [tex]\(1 + 3 = 4\)[/tex].
Since all terms have the same degree, we can focus on organizing them consistently in the following way: First, by the highest degree of [tex]\(x\)[/tex] and second, by any remaining variables consistently.
Now let's determine the order for each polynomial provided:
1. [tex]\(8 x^2 y^2-3 x^3 y+4 x^4-7 x y^3\)[/tex]
- Ordering by degrees: [tex]\(4 x^4\)[/tex], [tex]\(-3 x^3 y\)[/tex], [tex]\(8 x^2 y^2\)[/tex], [tex]\(-7 x y^3\)[/tex]
2. [tex]\(4 x^4-3 x^3 y+8 x^2 y^2-7 x y^3\)[/tex]
- This polynomial is correctly ordered: [tex]\(4 x^4\)[/tex], [tex]\(-3 x^3 y\)[/tex], [tex]\(8 x^2 y^2\)[/tex], [tex]\(-7 x y^3\)[/tex]
3. [tex]\(4 x^4-7 x y^3-3 x^3 y+8 x^2 y^2\)[/tex]
- The order is not consistent.
4. [tex]\(4 x^4+8 x^2 y^2-3 x^3 y-7 x y^3\)[/tex]
- The order is not correct since [tex]\(8 x^2 y^2\)[/tex] appears before [tex]\(-3 x^3 y\)[/tex].
5. [tex]\(-7 x y^3-3 x^3 y+8 x^2 y^2+4 x^4\)[/tex]
- The order is not correct since it starts with [tex]\(-7 x y^3\)[/tex] instead of [tex]\(4 x^4\)[/tex].
Examining all the options, it is clear that the polynomial [tex]\(4 x^4-3 x^3 y+8 x^2 y^2-7 x y^3\)[/tex] is in standard form with terms ordered by the degree of [tex]\(x\)[/tex] from highest to lowest and then by systematically by any remaining variables.
Therefore, the polynomial in standard form is:
[tex]\[ \boxed{4 x^4-3 x^3 y+8 x^2 y^2-7 x y^3} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.