Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To complete the proof, let's fill in the missing statements and reasons in the table.
Given: [tex]\(M-N-P-Q\)[/tex] on [tex]\(\overline{MQ}\)[/tex]
Prove: [tex]\(MN + NP + PQ = MQ\)[/tex]
[tex]\[ \begin{array}{|c|c|} \hline \text{Statements} & \text{Reasons} \\ \hline 1. M - N - P - Q \text{ on } \overline{MQ} & 1. \text{Given} \\ 2. MN + NQ = MQ & 2. \text{By the definition of a line segment} \\ 3. NP + PQ = NQ & 3. \text{By the definition of a line segment} \\ 4. MN + NP + PQ = MQ & 4. \text{Substitution Property of Equality} \\ \hline \end{array} \][/tex]
Detailed Explanation:
1. Statement 1: Given
[tex]\(M-N-P-Q\)[/tex] on [tex]\(\overline{MQ}\)[/tex] means that points M, N, P, and Q are collinear on the line segment from [tex]\(M\)[/tex] to [tex]\(Q\)[/tex].
2. Statement 2: [tex]\(MN + NQ = MQ\)[/tex]
Reason: By the definition of a line segment, the total distance [tex]\(MQ\)[/tex] can be expressed as the sum of the distances from [tex]\(M\)[/tex] to [tex]\(N\)[/tex] and from [tex]\(N\)[/tex] to [tex]\(Q\)[/tex]. This is because [tex]\(N\)[/tex] is between [tex]\(M\)[/tex] and [tex]\(Q\)[/tex].
3. Statement 3: [tex]\(NP + PQ = NQ\)[/tex]
Reason: Similarly, the distance [tex]\(NQ\)[/tex] can be expressed as the sum of the distances from [tex]\(N\)[/tex] to [tex]\(P\)[/tex] and from [tex]\(P\)[/tex] to [tex]\(Q\)[/tex]. This is because [tex]\(P\)[/tex] is between [tex]\(N\)[/tex] and [tex]\(Q\)[/tex].
4. Statement 4: [tex]\(MN + NP + PQ = MQ\)[/tex]
Reason: Substitution Property of Equality. Using statement 3, substitute [tex]\(NQ\)[/tex] in statement 2 with [tex]\(NP + PQ\)[/tex]:
[tex]\[ MN + (NP + PQ) = MQ \][/tex]
Which simplifies to:
[tex]\[ MN + NP + PQ = MQ \][/tex]
Thus, we have shown using the definitions of line segments and the substitution property of equality that [tex]\(MN + NP + PQ = MQ\)[/tex].
Given: [tex]\(M-N-P-Q\)[/tex] on [tex]\(\overline{MQ}\)[/tex]
Prove: [tex]\(MN + NP + PQ = MQ\)[/tex]
[tex]\[ \begin{array}{|c|c|} \hline \text{Statements} & \text{Reasons} \\ \hline 1. M - N - P - Q \text{ on } \overline{MQ} & 1. \text{Given} \\ 2. MN + NQ = MQ & 2. \text{By the definition of a line segment} \\ 3. NP + PQ = NQ & 3. \text{By the definition of a line segment} \\ 4. MN + NP + PQ = MQ & 4. \text{Substitution Property of Equality} \\ \hline \end{array} \][/tex]
Detailed Explanation:
1. Statement 1: Given
[tex]\(M-N-P-Q\)[/tex] on [tex]\(\overline{MQ}\)[/tex] means that points M, N, P, and Q are collinear on the line segment from [tex]\(M\)[/tex] to [tex]\(Q\)[/tex].
2. Statement 2: [tex]\(MN + NQ = MQ\)[/tex]
Reason: By the definition of a line segment, the total distance [tex]\(MQ\)[/tex] can be expressed as the sum of the distances from [tex]\(M\)[/tex] to [tex]\(N\)[/tex] and from [tex]\(N\)[/tex] to [tex]\(Q\)[/tex]. This is because [tex]\(N\)[/tex] is between [tex]\(M\)[/tex] and [tex]\(Q\)[/tex].
3. Statement 3: [tex]\(NP + PQ = NQ\)[/tex]
Reason: Similarly, the distance [tex]\(NQ\)[/tex] can be expressed as the sum of the distances from [tex]\(N\)[/tex] to [tex]\(P\)[/tex] and from [tex]\(P\)[/tex] to [tex]\(Q\)[/tex]. This is because [tex]\(P\)[/tex] is between [tex]\(N\)[/tex] and [tex]\(Q\)[/tex].
4. Statement 4: [tex]\(MN + NP + PQ = MQ\)[/tex]
Reason: Substitution Property of Equality. Using statement 3, substitute [tex]\(NQ\)[/tex] in statement 2 with [tex]\(NP + PQ\)[/tex]:
[tex]\[ MN + (NP + PQ) = MQ \][/tex]
Which simplifies to:
[tex]\[ MN + NP + PQ = MQ \][/tex]
Thus, we have shown using the definitions of line segments and the substitution property of equality that [tex]\(MN + NP + PQ = MQ\)[/tex].
I got it wrong because I went with different answers trust me it’s -2 1/4 or D
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.