At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Alright, let's delve into the given function [tex]\( f(x) \)[/tex] and understand its various components step-by-step.
The function in question is:
[tex]\[ f(x) = \sqrt{2x} + 5x^2 \][/tex]
### Step-by-Step Solution:
1. Understand Each Term:
- The first term is [tex]\( \sqrt{2x} \)[/tex], which involves a square root of the product of 2 and [tex]\( x \)[/tex].
- The second term is [tex]\( 5x^2 \)[/tex], which is a basic polynomial term where [tex]\( x \)[/tex] is squared and then multiplied by 5.
2. Rewrite the Function:
Let's rewrite the function to clearly see its structure:
[tex]\[ f(x) = \sqrt{2x} + 5x^2 \][/tex]
3. Handling the Square Root Term:
Consider the first term [tex]\( \sqrt{2x} \)[/tex]:
- The expression [tex]\( 2x \)[/tex] is inside the square root. To manipulate or simplify this, remember that:
[tex]\[ \sqrt{2x} = \sqrt{2} \cdot \sqrt{x} \][/tex]
Thus, we separate it into two distinct square root factors.
4. Handling the Polynomial Term:
The second term [tex]\( 5x^2 \)[/tex] is already in its simplest form:
- [tex]\( 5 \)[/tex] is the coefficient.
- [tex]\( x^2 \)[/tex] is [tex]\( x \)[/tex] raised to the power of 2.
So, combining both observations, we can rewrite the function as:
[tex]\[ f(x) = \sqrt{2} \cdot \sqrt{x} + 5x^2 \][/tex]
However, this expression:
[tex]\[ \sqrt{2}\sqrt{x} + 5x^2 \][/tex]
is more commonly written in a slightly more compact form:
[tex]\[ f(x) = \sqrt{2x} + 5x^2 \][/tex]
### Conclusion
In summary, the function [tex]\( f(x) \)[/tex] combines a radical expression and a polynomial expression:
[tex]\[ f(x) = \sqrt{2} \cdot \sqrt{x} + 5x^2 \][/tex]
Given this function:
[tex]\[ f(x) = \sqrt{2x} + 5x^2 \][/tex]
we recognize it can also be written as:
[tex]\[ f(x) = \sqrt{2}\sqrt{x} + 5x^2 \][/tex]
stressing the separate nature of the constants and variables involved.
The function in question is:
[tex]\[ f(x) = \sqrt{2x} + 5x^2 \][/tex]
### Step-by-Step Solution:
1. Understand Each Term:
- The first term is [tex]\( \sqrt{2x} \)[/tex], which involves a square root of the product of 2 and [tex]\( x \)[/tex].
- The second term is [tex]\( 5x^2 \)[/tex], which is a basic polynomial term where [tex]\( x \)[/tex] is squared and then multiplied by 5.
2. Rewrite the Function:
Let's rewrite the function to clearly see its structure:
[tex]\[ f(x) = \sqrt{2x} + 5x^2 \][/tex]
3. Handling the Square Root Term:
Consider the first term [tex]\( \sqrt{2x} \)[/tex]:
- The expression [tex]\( 2x \)[/tex] is inside the square root. To manipulate or simplify this, remember that:
[tex]\[ \sqrt{2x} = \sqrt{2} \cdot \sqrt{x} \][/tex]
Thus, we separate it into two distinct square root factors.
4. Handling the Polynomial Term:
The second term [tex]\( 5x^2 \)[/tex] is already in its simplest form:
- [tex]\( 5 \)[/tex] is the coefficient.
- [tex]\( x^2 \)[/tex] is [tex]\( x \)[/tex] raised to the power of 2.
So, combining both observations, we can rewrite the function as:
[tex]\[ f(x) = \sqrt{2} \cdot \sqrt{x} + 5x^2 \][/tex]
However, this expression:
[tex]\[ \sqrt{2}\sqrt{x} + 5x^2 \][/tex]
is more commonly written in a slightly more compact form:
[tex]\[ f(x) = \sqrt{2x} + 5x^2 \][/tex]
### Conclusion
In summary, the function [tex]\( f(x) \)[/tex] combines a radical expression and a polynomial expression:
[tex]\[ f(x) = \sqrt{2} \cdot \sqrt{x} + 5x^2 \][/tex]
Given this function:
[tex]\[ f(x) = \sqrt{2x} + 5x^2 \][/tex]
we recognize it can also be written as:
[tex]\[ f(x) = \sqrt{2}\sqrt{x} + 5x^2 \][/tex]
stressing the separate nature of the constants and variables involved.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.