Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the nature of the roots of the quadratic equation [tex]\( x^2 + x + 1 = 0 \)[/tex], we will analyze the discriminant of this equation.
The general form of a quadratic equation is:
[tex]\[ ax^2 + bx + c = 0 \][/tex]
For the given equation [tex]\( x^2 + x + 1 = 0 \)[/tex], we identify the coefficients as:
[tex]\[ a = 1 \][/tex]
[tex]\[ b = 1 \][/tex]
[tex]\[ c = 1 \][/tex]
The discriminant ([tex]\( \Delta \)[/tex]) of a quadratic equation is given by the formula:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] into this formula, we get:
[tex]\[ \Delta = 1^2 - 4 \cdot 1 \cdot 1 \][/tex]
[tex]\[ \Delta = 1 - 4 \][/tex]
[tex]\[ \Delta = -3 \][/tex]
The value of the discriminant helps us determine the nature of the roots of the quadratic equation:
- If [tex]\( \Delta > 0 \)[/tex], the roots are real and distinct.
- If [tex]\( \Delta = 0 \)[/tex], the roots are real and equal.
- If [tex]\( \Delta < 0 \)[/tex], the roots are not-real (complex).
In this problem, we have:
[tex]\[ \Delta = -3 \][/tex]
Since the discriminant is less than zero ([tex]\( \Delta < 0 \)[/tex]), it indicates that the roots of the quadratic equation [tex]\( x^2 + x + 1 = 0 \)[/tex] are not-real (complex).
Thus, the correct answer is:
(D) not-real
The general form of a quadratic equation is:
[tex]\[ ax^2 + bx + c = 0 \][/tex]
For the given equation [tex]\( x^2 + x + 1 = 0 \)[/tex], we identify the coefficients as:
[tex]\[ a = 1 \][/tex]
[tex]\[ b = 1 \][/tex]
[tex]\[ c = 1 \][/tex]
The discriminant ([tex]\( \Delta \)[/tex]) of a quadratic equation is given by the formula:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] into this formula, we get:
[tex]\[ \Delta = 1^2 - 4 \cdot 1 \cdot 1 \][/tex]
[tex]\[ \Delta = 1 - 4 \][/tex]
[tex]\[ \Delta = -3 \][/tex]
The value of the discriminant helps us determine the nature of the roots of the quadratic equation:
- If [tex]\( \Delta > 0 \)[/tex], the roots are real and distinct.
- If [tex]\( \Delta = 0 \)[/tex], the roots are real and equal.
- If [tex]\( \Delta < 0 \)[/tex], the roots are not-real (complex).
In this problem, we have:
[tex]\[ \Delta = -3 \][/tex]
Since the discriminant is less than zero ([tex]\( \Delta < 0 \)[/tex]), it indicates that the roots of the quadratic equation [tex]\( x^2 + x + 1 = 0 \)[/tex] are not-real (complex).
Thus, the correct answer is:
(D) not-real
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.