Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To address this question, let's analyze the situation step by step.
1. Understanding the Scenario:
- We are dealing with two independent events: drawing a Queen from a standard deck of cards and then flipping a coin to get Tails.
2. Probability Calculations:
- Drawing a Queen:
- A standard deck of 52 cards has 4 Queens. Consequently, the probability of drawing a Queen is [tex]\( \frac{4}{52} = \frac{1}{13} \)[/tex].
- Flipping a Tail:
- Since a fair coin has two sides, the probability of getting Tails is [tex]\( \frac{1}{2} \)[/tex].
3. Combining Probabilities:
- The events are independent, so we multiply their probabilities:
- Probability of drawing a Queen and flipping Tails:
[tex]\[ \text{Probability} = \left( \frac{1}{13} \right) \times \left( \frac{1}{2} \right) = \frac{1}{26} \][/tex]
- This result, when converted to a decimal, is approximately 0.03846.
4. Classifying the Type of Probability:
- Since the given probability of 1/26 is derived from the known properties and fixed structure of a deck of cards and a coin flip without needing to conduct repeated trials or experiments, it is a clear example of theoretical probability.
Considering this analysis, the correct answer to the question would be:
d) This shows theoretical probability.
1. Understanding the Scenario:
- We are dealing with two independent events: drawing a Queen from a standard deck of cards and then flipping a coin to get Tails.
2. Probability Calculations:
- Drawing a Queen:
- A standard deck of 52 cards has 4 Queens. Consequently, the probability of drawing a Queen is [tex]\( \frac{4}{52} = \frac{1}{13} \)[/tex].
- Flipping a Tail:
- Since a fair coin has two sides, the probability of getting Tails is [tex]\( \frac{1}{2} \)[/tex].
3. Combining Probabilities:
- The events are independent, so we multiply their probabilities:
- Probability of drawing a Queen and flipping Tails:
[tex]\[ \text{Probability} = \left( \frac{1}{13} \right) \times \left( \frac{1}{2} \right) = \frac{1}{26} \][/tex]
- This result, when converted to a decimal, is approximately 0.03846.
4. Classifying the Type of Probability:
- Since the given probability of 1/26 is derived from the known properties and fixed structure of a deck of cards and a coin flip without needing to conduct repeated trials or experiments, it is a clear example of theoretical probability.
Considering this analysis, the correct answer to the question would be:
d) This shows theoretical probability.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.