Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the range of the function [tex]\( y = \sqrt[3]{x+8} \)[/tex], we need to consider how the output [tex]\( y \)[/tex] behaves for all possible input values [tex]\( x \)[/tex].
1. Understanding the cube root function: The cube root function [tex]\( y = \sqrt[3]{x} \)[/tex] is defined for all real numbers. This means [tex]\( \sqrt[3]{x} \)[/tex] can take any real number as input and produce any real number as output.
2. Transforming the input: In the function [tex]\( y = \sqrt[3]{x+8} \)[/tex], you are simply shifting the input of the cube root function by 8 units to the left, which does not restrict the inputs or outputs. Therefore, for any real number [tex]\( x \)[/tex], [tex]\( x + 8 \)[/tex] is still a real number, and thus [tex]\( \sqrt[3]{x+8} \)[/tex] is well-defined for all [tex]\( x \)[/tex].
3. Range analysis: Since [tex]\( \sqrt[3]{x+8} \)[/tex] applies the cube root to [tex]\( x+8 \)[/tex], and the cube root function can output all real numbers, [tex]\( y \)[/tex] can indeed take any real value. This means the range is not restricted in any way and [tex]\( y \)[/tex] can be any real number.
Therefore, the range of the function [tex]\( y = \sqrt[3]{x+8} \)[/tex] is [tex]\( -\infty < y < \infty \)[/tex], or in other words, all real numbers.
Thus, the correct answer is:
[tex]\[ -\infty < y < \infty \][/tex]
1. Understanding the cube root function: The cube root function [tex]\( y = \sqrt[3]{x} \)[/tex] is defined for all real numbers. This means [tex]\( \sqrt[3]{x} \)[/tex] can take any real number as input and produce any real number as output.
2. Transforming the input: In the function [tex]\( y = \sqrt[3]{x+8} \)[/tex], you are simply shifting the input of the cube root function by 8 units to the left, which does not restrict the inputs or outputs. Therefore, for any real number [tex]\( x \)[/tex], [tex]\( x + 8 \)[/tex] is still a real number, and thus [tex]\( \sqrt[3]{x+8} \)[/tex] is well-defined for all [tex]\( x \)[/tex].
3. Range analysis: Since [tex]\( \sqrt[3]{x+8} \)[/tex] applies the cube root to [tex]\( x+8 \)[/tex], and the cube root function can output all real numbers, [tex]\( y \)[/tex] can indeed take any real value. This means the range is not restricted in any way and [tex]\( y \)[/tex] can be any real number.
Therefore, the range of the function [tex]\( y = \sqrt[3]{x+8} \)[/tex] is [tex]\( -\infty < y < \infty \)[/tex], or in other words, all real numbers.
Thus, the correct answer is:
[tex]\[ -\infty < y < \infty \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.