Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the range of the function [tex]\( y = \sqrt[3]{x+8} \)[/tex], we need to consider how the output [tex]\( y \)[/tex] behaves for all possible input values [tex]\( x \)[/tex].
1. Understanding the cube root function: The cube root function [tex]\( y = \sqrt[3]{x} \)[/tex] is defined for all real numbers. This means [tex]\( \sqrt[3]{x} \)[/tex] can take any real number as input and produce any real number as output.
2. Transforming the input: In the function [tex]\( y = \sqrt[3]{x+8} \)[/tex], you are simply shifting the input of the cube root function by 8 units to the left, which does not restrict the inputs or outputs. Therefore, for any real number [tex]\( x \)[/tex], [tex]\( x + 8 \)[/tex] is still a real number, and thus [tex]\( \sqrt[3]{x+8} \)[/tex] is well-defined for all [tex]\( x \)[/tex].
3. Range analysis: Since [tex]\( \sqrt[3]{x+8} \)[/tex] applies the cube root to [tex]\( x+8 \)[/tex], and the cube root function can output all real numbers, [tex]\( y \)[/tex] can indeed take any real value. This means the range is not restricted in any way and [tex]\( y \)[/tex] can be any real number.
Therefore, the range of the function [tex]\( y = \sqrt[3]{x+8} \)[/tex] is [tex]\( -\infty < y < \infty \)[/tex], or in other words, all real numbers.
Thus, the correct answer is:
[tex]\[ -\infty < y < \infty \][/tex]
1. Understanding the cube root function: The cube root function [tex]\( y = \sqrt[3]{x} \)[/tex] is defined for all real numbers. This means [tex]\( \sqrt[3]{x} \)[/tex] can take any real number as input and produce any real number as output.
2. Transforming the input: In the function [tex]\( y = \sqrt[3]{x+8} \)[/tex], you are simply shifting the input of the cube root function by 8 units to the left, which does not restrict the inputs or outputs. Therefore, for any real number [tex]\( x \)[/tex], [tex]\( x + 8 \)[/tex] is still a real number, and thus [tex]\( \sqrt[3]{x+8} \)[/tex] is well-defined for all [tex]\( x \)[/tex].
3. Range analysis: Since [tex]\( \sqrt[3]{x+8} \)[/tex] applies the cube root to [tex]\( x+8 \)[/tex], and the cube root function can output all real numbers, [tex]\( y \)[/tex] can indeed take any real value. This means the range is not restricted in any way and [tex]\( y \)[/tex] can be any real number.
Therefore, the range of the function [tex]\( y = \sqrt[3]{x+8} \)[/tex] is [tex]\( -\infty < y < \infty \)[/tex], or in other words, all real numbers.
Thus, the correct answer is:
[tex]\[ -\infty < y < \infty \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.