Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the range of the function [tex]\( y = \sqrt[3]{x+8} \)[/tex], we need to consider how the output [tex]\( y \)[/tex] behaves for all possible input values [tex]\( x \)[/tex].
1. Understanding the cube root function: The cube root function [tex]\( y = \sqrt[3]{x} \)[/tex] is defined for all real numbers. This means [tex]\( \sqrt[3]{x} \)[/tex] can take any real number as input and produce any real number as output.
2. Transforming the input: In the function [tex]\( y = \sqrt[3]{x+8} \)[/tex], you are simply shifting the input of the cube root function by 8 units to the left, which does not restrict the inputs or outputs. Therefore, for any real number [tex]\( x \)[/tex], [tex]\( x + 8 \)[/tex] is still a real number, and thus [tex]\( \sqrt[3]{x+8} \)[/tex] is well-defined for all [tex]\( x \)[/tex].
3. Range analysis: Since [tex]\( \sqrt[3]{x+8} \)[/tex] applies the cube root to [tex]\( x+8 \)[/tex], and the cube root function can output all real numbers, [tex]\( y \)[/tex] can indeed take any real value. This means the range is not restricted in any way and [tex]\( y \)[/tex] can be any real number.
Therefore, the range of the function [tex]\( y = \sqrt[3]{x+8} \)[/tex] is [tex]\( -\infty < y < \infty \)[/tex], or in other words, all real numbers.
Thus, the correct answer is:
[tex]\[ -\infty < y < \infty \][/tex]
1. Understanding the cube root function: The cube root function [tex]\( y = \sqrt[3]{x} \)[/tex] is defined for all real numbers. This means [tex]\( \sqrt[3]{x} \)[/tex] can take any real number as input and produce any real number as output.
2. Transforming the input: In the function [tex]\( y = \sqrt[3]{x+8} \)[/tex], you are simply shifting the input of the cube root function by 8 units to the left, which does not restrict the inputs or outputs. Therefore, for any real number [tex]\( x \)[/tex], [tex]\( x + 8 \)[/tex] is still a real number, and thus [tex]\( \sqrt[3]{x+8} \)[/tex] is well-defined for all [tex]\( x \)[/tex].
3. Range analysis: Since [tex]\( \sqrt[3]{x+8} \)[/tex] applies the cube root to [tex]\( x+8 \)[/tex], and the cube root function can output all real numbers, [tex]\( y \)[/tex] can indeed take any real value. This means the range is not restricted in any way and [tex]\( y \)[/tex] can be any real number.
Therefore, the range of the function [tex]\( y = \sqrt[3]{x+8} \)[/tex] is [tex]\( -\infty < y < \infty \)[/tex], or in other words, all real numbers.
Thus, the correct answer is:
[tex]\[ -\infty < y < \infty \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.