Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the difference between the given functions [tex]\(\frac{x}{x^2-2x-15}\)[/tex] and [tex]\(\frac{4}{x^2+2x-35}\)[/tex], we need to determine a common denominator first and then combine the fractions. Let’s simplify and analyze the given expressions step by step.
1. Factor the Denominators:
The first expression is [tex]\(\frac{x}{x^2 - 2x - 15}\)[/tex]. The denominator can be factored as:
[tex]\[ x^2 - 2x - 15 = (x - 5)(x + 3) \][/tex]
The second expression is [tex]\(\frac{4}{x^2 + 2x - 35}\)[/tex]. The denominator can be factored as:
[tex]\[ x^2 + 2x - 35 = (x + 7)(x - 5) \][/tex]
2. Rewrite Fractions with Common Denominator:
The common denominator for both fractions is [tex]\((x - 5)(x + 3)(x + 7)\)[/tex].
Rewrite each fraction with the common denominator:
[tex]\[ \frac{x}{(x - 5)(x + 3)} = \frac{x(x + 7)}{(x - 5)(x + 3)(x + 7)} \][/tex]
[tex]\[ \frac{4}{(x - 5)(x + 7)} = \frac{4(x + 3)}{(x - 5)(x + 3)(x + 7)} \][/tex]
3. Combine the Fractions:
Now calculate the difference of the fractions:
[tex]\[ \frac{x(x + 7)}{(x - 5)(x + 3)(x + 7)} - \frac{4(x + 3)}{(x - 5)(x + 3)(x + 7)} \][/tex]
Combine the numerators over the common denominator:
[tex]\[ \frac{x(x + 7) - 4(x + 3)}{(x - 5)(x + 3)(x + 7)} \][/tex]
4. Simplify the Numerator:
Simplify the expression in the numerator:
[tex]\[ x(x + 7) - 4(x + 3) = x^2 + 7x - 4x - 12 = x^2 + 3x - 12 \][/tex]
5. Final Combined Expression:
So the combined fraction simplifies to:
[tex]\[ \frac{x^2 + 3x - 12}{(x - 5)(x + 3)(x + 7)} \][/tex]
The final simplified difference between the given fractions is:
[tex]\[ \frac{x^2 + 3x - 12}{(x - 5)(x + 3)(x + 7)} \][/tex]
Thus, the correct answer among the options provided is:
[tex]\[ \boxed{\frac{x^2 + 3x - 12}{(x - 5)(x + 3)(x + 7)}} \][/tex]
1. Factor the Denominators:
The first expression is [tex]\(\frac{x}{x^2 - 2x - 15}\)[/tex]. The denominator can be factored as:
[tex]\[ x^2 - 2x - 15 = (x - 5)(x + 3) \][/tex]
The second expression is [tex]\(\frac{4}{x^2 + 2x - 35}\)[/tex]. The denominator can be factored as:
[tex]\[ x^2 + 2x - 35 = (x + 7)(x - 5) \][/tex]
2. Rewrite Fractions with Common Denominator:
The common denominator for both fractions is [tex]\((x - 5)(x + 3)(x + 7)\)[/tex].
Rewrite each fraction with the common denominator:
[tex]\[ \frac{x}{(x - 5)(x + 3)} = \frac{x(x + 7)}{(x - 5)(x + 3)(x + 7)} \][/tex]
[tex]\[ \frac{4}{(x - 5)(x + 7)} = \frac{4(x + 3)}{(x - 5)(x + 3)(x + 7)} \][/tex]
3. Combine the Fractions:
Now calculate the difference of the fractions:
[tex]\[ \frac{x(x + 7)}{(x - 5)(x + 3)(x + 7)} - \frac{4(x + 3)}{(x - 5)(x + 3)(x + 7)} \][/tex]
Combine the numerators over the common denominator:
[tex]\[ \frac{x(x + 7) - 4(x + 3)}{(x - 5)(x + 3)(x + 7)} \][/tex]
4. Simplify the Numerator:
Simplify the expression in the numerator:
[tex]\[ x(x + 7) - 4(x + 3) = x^2 + 7x - 4x - 12 = x^2 + 3x - 12 \][/tex]
5. Final Combined Expression:
So the combined fraction simplifies to:
[tex]\[ \frac{x^2 + 3x - 12}{(x - 5)(x + 3)(x + 7)} \][/tex]
The final simplified difference between the given fractions is:
[tex]\[ \frac{x^2 + 3x - 12}{(x - 5)(x + 3)(x + 7)} \][/tex]
Thus, the correct answer among the options provided is:
[tex]\[ \boxed{\frac{x^2 + 3x - 12}{(x - 5)(x + 3)(x + 7)}} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.