Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the graph of the function [tex]\( y = \sqrt[3]{x-5} \)[/tex], it's crucial to understand the basic characteristics and transformations involved. Let's break down the function step by step:
### Step 1: Understanding the Cubic Root Function
The basic cubic root function is [tex]\( y = \sqrt[3]{x} \)[/tex]. This function has the following characteristics:
- It is an odd function, meaning it is symmetric about the origin.
- The graph passes through the origin (0, 0).
- As [tex]\( x \)[/tex] increases, [tex]\( y \)[/tex] increases, and as [tex]\( x \)[/tex] decreases, [tex]\( y \)[/tex] decreases.
- The graph extends infinitely in all directions.
### Step 2: Horizontal Shift
The given function is [tex]\( y = \sqrt[3]{x - 5} \)[/tex]. This is a horizontal shift of the basic cubic root function:
- The term [tex]\( x - 5 \)[/tex] indicates a shift to the right by 5 units.
### Step 3: Key Points and Plotting
To plot the function, consider a few key points:
1. When [tex]\( x = 5 \)[/tex]:
[tex]\[ y = \sqrt[3]{5 - 5} = \sqrt[3]{0} = 0 \][/tex]
The point (5, 0) lies on the graph.
2. When [tex]\( x = 6 \)[/tex]:
[tex]\[ y = \sqrt[3]{6 - 5} = \sqrt[3]{1} = 1 \][/tex]
The point (6, 1) lies on the graph.
3. When [tex]\( x = 4 \)[/tex]:
[tex]\[ y = \sqrt[3]{4 - 5} = \sqrt[3]{-1} = -1 \][/tex]
The point (4, -1) lies on the graph.
4. When [tex]\( x = 13 \)[/tex]:
[tex]\[ y = \sqrt[3]{13 - 5} = \sqrt[3]{8} = 2 \][/tex]
The point (13, 2) lies on the graph.
5. When [tex]\( x = -3 \)[/tex]:
[tex]\[ y = \sqrt[3]{-3 - 5} = \sqrt[3]{-8} = -2 \][/tex]
The point (-3, -2) lies on the graph.
### Summary of the Graph Characteristics
- The graph of [tex]\( y = \sqrt[3]{x - 5} \)[/tex] is the same shape as [tex]\( y = \sqrt[3]{x} \)[/tex], but shifted 5 units to the right.
- The curve crosses the x-axis at (5, 0).
- For [tex]\( x > 5 \)[/tex], the function values (y) are positive and increase.
- For [tex]\( x < 5 \)[/tex], the function values (y) are negative and decrease.
To identify the correct choice from given graphs, look for one with these characteristics, particularly the horizontal shift to the right.
### Step 1: Understanding the Cubic Root Function
The basic cubic root function is [tex]\( y = \sqrt[3]{x} \)[/tex]. This function has the following characteristics:
- It is an odd function, meaning it is symmetric about the origin.
- The graph passes through the origin (0, 0).
- As [tex]\( x \)[/tex] increases, [tex]\( y \)[/tex] increases, and as [tex]\( x \)[/tex] decreases, [tex]\( y \)[/tex] decreases.
- The graph extends infinitely in all directions.
### Step 2: Horizontal Shift
The given function is [tex]\( y = \sqrt[3]{x - 5} \)[/tex]. This is a horizontal shift of the basic cubic root function:
- The term [tex]\( x - 5 \)[/tex] indicates a shift to the right by 5 units.
### Step 3: Key Points and Plotting
To plot the function, consider a few key points:
1. When [tex]\( x = 5 \)[/tex]:
[tex]\[ y = \sqrt[3]{5 - 5} = \sqrt[3]{0} = 0 \][/tex]
The point (5, 0) lies on the graph.
2. When [tex]\( x = 6 \)[/tex]:
[tex]\[ y = \sqrt[3]{6 - 5} = \sqrt[3]{1} = 1 \][/tex]
The point (6, 1) lies on the graph.
3. When [tex]\( x = 4 \)[/tex]:
[tex]\[ y = \sqrt[3]{4 - 5} = \sqrt[3]{-1} = -1 \][/tex]
The point (4, -1) lies on the graph.
4. When [tex]\( x = 13 \)[/tex]:
[tex]\[ y = \sqrt[3]{13 - 5} = \sqrt[3]{8} = 2 \][/tex]
The point (13, 2) lies on the graph.
5. When [tex]\( x = -3 \)[/tex]:
[tex]\[ y = \sqrt[3]{-3 - 5} = \sqrt[3]{-8} = -2 \][/tex]
The point (-3, -2) lies on the graph.
### Summary of the Graph Characteristics
- The graph of [tex]\( y = \sqrt[3]{x - 5} \)[/tex] is the same shape as [tex]\( y = \sqrt[3]{x} \)[/tex], but shifted 5 units to the right.
- The curve crosses the x-axis at (5, 0).
- For [tex]\( x > 5 \)[/tex], the function values (y) are positive and increase.
- For [tex]\( x < 5 \)[/tex], the function values (y) are negative and decrease.
To identify the correct choice from given graphs, look for one with these characteristics, particularly the horizontal shift to the right.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.