Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the graph of the function [tex]\( y = \sqrt[3]{x-5} \)[/tex], it's crucial to understand the basic characteristics and transformations involved. Let's break down the function step by step:
### Step 1: Understanding the Cubic Root Function
The basic cubic root function is [tex]\( y = \sqrt[3]{x} \)[/tex]. This function has the following characteristics:
- It is an odd function, meaning it is symmetric about the origin.
- The graph passes through the origin (0, 0).
- As [tex]\( x \)[/tex] increases, [tex]\( y \)[/tex] increases, and as [tex]\( x \)[/tex] decreases, [tex]\( y \)[/tex] decreases.
- The graph extends infinitely in all directions.
### Step 2: Horizontal Shift
The given function is [tex]\( y = \sqrt[3]{x - 5} \)[/tex]. This is a horizontal shift of the basic cubic root function:
- The term [tex]\( x - 5 \)[/tex] indicates a shift to the right by 5 units.
### Step 3: Key Points and Plotting
To plot the function, consider a few key points:
1. When [tex]\( x = 5 \)[/tex]:
[tex]\[ y = \sqrt[3]{5 - 5} = \sqrt[3]{0} = 0 \][/tex]
The point (5, 0) lies on the graph.
2. When [tex]\( x = 6 \)[/tex]:
[tex]\[ y = \sqrt[3]{6 - 5} = \sqrt[3]{1} = 1 \][/tex]
The point (6, 1) lies on the graph.
3. When [tex]\( x = 4 \)[/tex]:
[tex]\[ y = \sqrt[3]{4 - 5} = \sqrt[3]{-1} = -1 \][/tex]
The point (4, -1) lies on the graph.
4. When [tex]\( x = 13 \)[/tex]:
[tex]\[ y = \sqrt[3]{13 - 5} = \sqrt[3]{8} = 2 \][/tex]
The point (13, 2) lies on the graph.
5. When [tex]\( x = -3 \)[/tex]:
[tex]\[ y = \sqrt[3]{-3 - 5} = \sqrt[3]{-8} = -2 \][/tex]
The point (-3, -2) lies on the graph.
### Summary of the Graph Characteristics
- The graph of [tex]\( y = \sqrt[3]{x - 5} \)[/tex] is the same shape as [tex]\( y = \sqrt[3]{x} \)[/tex], but shifted 5 units to the right.
- The curve crosses the x-axis at (5, 0).
- For [tex]\( x > 5 \)[/tex], the function values (y) are positive and increase.
- For [tex]\( x < 5 \)[/tex], the function values (y) are negative and decrease.
To identify the correct choice from given graphs, look for one with these characteristics, particularly the horizontal shift to the right.
### Step 1: Understanding the Cubic Root Function
The basic cubic root function is [tex]\( y = \sqrt[3]{x} \)[/tex]. This function has the following characteristics:
- It is an odd function, meaning it is symmetric about the origin.
- The graph passes through the origin (0, 0).
- As [tex]\( x \)[/tex] increases, [tex]\( y \)[/tex] increases, and as [tex]\( x \)[/tex] decreases, [tex]\( y \)[/tex] decreases.
- The graph extends infinitely in all directions.
### Step 2: Horizontal Shift
The given function is [tex]\( y = \sqrt[3]{x - 5} \)[/tex]. This is a horizontal shift of the basic cubic root function:
- The term [tex]\( x - 5 \)[/tex] indicates a shift to the right by 5 units.
### Step 3: Key Points and Plotting
To plot the function, consider a few key points:
1. When [tex]\( x = 5 \)[/tex]:
[tex]\[ y = \sqrt[3]{5 - 5} = \sqrt[3]{0} = 0 \][/tex]
The point (5, 0) lies on the graph.
2. When [tex]\( x = 6 \)[/tex]:
[tex]\[ y = \sqrt[3]{6 - 5} = \sqrt[3]{1} = 1 \][/tex]
The point (6, 1) lies on the graph.
3. When [tex]\( x = 4 \)[/tex]:
[tex]\[ y = \sqrt[3]{4 - 5} = \sqrt[3]{-1} = -1 \][/tex]
The point (4, -1) lies on the graph.
4. When [tex]\( x = 13 \)[/tex]:
[tex]\[ y = \sqrt[3]{13 - 5} = \sqrt[3]{8} = 2 \][/tex]
The point (13, 2) lies on the graph.
5. When [tex]\( x = -3 \)[/tex]:
[tex]\[ y = \sqrt[3]{-3 - 5} = \sqrt[3]{-8} = -2 \][/tex]
The point (-3, -2) lies on the graph.
### Summary of the Graph Characteristics
- The graph of [tex]\( y = \sqrt[3]{x - 5} \)[/tex] is the same shape as [tex]\( y = \sqrt[3]{x} \)[/tex], but shifted 5 units to the right.
- The curve crosses the x-axis at (5, 0).
- For [tex]\( x > 5 \)[/tex], the function values (y) are positive and increase.
- For [tex]\( x < 5 \)[/tex], the function values (y) are negative and decrease.
To identify the correct choice from given graphs, look for one with these characteristics, particularly the horizontal shift to the right.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.