Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Given that a polynomial function [tex]\( f(x) \)[/tex] has roots [tex]\( 4 - 13i \)[/tex] and [tex]\( 5 \)[/tex], let's go through the steps to determine what must be a factor of this function.
### Step 1: Given roots and their properties
1. The roots provided are [tex]\( 4 - 13i \)[/tex] and [tex]\( 5 \)[/tex].
2. Polynomials with real coefficients have complex roots in conjugate pairs. This means if [tex]\( 4 - 13i \)[/tex] is a root, its conjugate [tex]\( 4 + 13i \)[/tex] must also be a root.
Thus, the roots of the polynomial are:
- [tex]\( 4 - 13i \)[/tex]
- [tex]\( 5 \)[/tex]
- [tex]\( 4 + 13i \)[/tex]
### Step 2: Construct factors for each root
For any given root [tex]\( r \)[/tex], [tex]\( (x - r) \)[/tex] is a factor of the polynomial.
- For the root [tex]\( 4 - 13i \)[/tex], the factor is [tex]\( (x - (4 - 13i)) \)[/tex].
- For the root [tex]\( 5 \)[/tex], the factor is [tex]\( (x - 5) \)[/tex].
- For the root [tex]\( 4 + 13i \)[/tex], the factor is [tex]\( (x - (4 + 13i)) \)[/tex].
### Step 3: Given choices for the factor of [tex]\( f(x) \)[/tex]
The possible factors provided in the choices are:
1. [tex]\( x + (13 - 4) \)[/tex]
2. [tex]\( x - (13 + 4) \)[/tex]
3. [tex]\( x + (4 + 13i) \)[/tex]
4. [tex]\( x - (4 + 13i) \)[/tex]
### Step 4: Identify the correct factor from the choices
Comparing the possible factors with our derived factors:
- [tex]\( x + (13 - 4) \)[/tex]
- This simplifies to [tex]\( x + 9 \)[/tex], which does not match any of our derived factors.
- [tex]\( x - (13 + 4) \)[/tex]
- This simplifies to [tex]\( x - 17 \)[/tex], which does not match any of our derived factors.
- [tex]\( x + (4 + 13i) \)[/tex]
- This simplifies to [tex]\( x - (-4 - 13i) \)[/tex], which is not in our set of derived factors.
- [tex]\( x - (4 + 13i) \)[/tex]
- This exactly matches the derived factor [tex]\( x - (4 + 13i) \)[/tex].
### Conclusion
The correct factor of [tex]\( f(x) \)[/tex] from the given choices is:
[tex]\[ x - (4 + 13i) \][/tex]
This corresponds to choice 4.
### Step 1: Given roots and their properties
1. The roots provided are [tex]\( 4 - 13i \)[/tex] and [tex]\( 5 \)[/tex].
2. Polynomials with real coefficients have complex roots in conjugate pairs. This means if [tex]\( 4 - 13i \)[/tex] is a root, its conjugate [tex]\( 4 + 13i \)[/tex] must also be a root.
Thus, the roots of the polynomial are:
- [tex]\( 4 - 13i \)[/tex]
- [tex]\( 5 \)[/tex]
- [tex]\( 4 + 13i \)[/tex]
### Step 2: Construct factors for each root
For any given root [tex]\( r \)[/tex], [tex]\( (x - r) \)[/tex] is a factor of the polynomial.
- For the root [tex]\( 4 - 13i \)[/tex], the factor is [tex]\( (x - (4 - 13i)) \)[/tex].
- For the root [tex]\( 5 \)[/tex], the factor is [tex]\( (x - 5) \)[/tex].
- For the root [tex]\( 4 + 13i \)[/tex], the factor is [tex]\( (x - (4 + 13i)) \)[/tex].
### Step 3: Given choices for the factor of [tex]\( f(x) \)[/tex]
The possible factors provided in the choices are:
1. [tex]\( x + (13 - 4) \)[/tex]
2. [tex]\( x - (13 + 4) \)[/tex]
3. [tex]\( x + (4 + 13i) \)[/tex]
4. [tex]\( x - (4 + 13i) \)[/tex]
### Step 4: Identify the correct factor from the choices
Comparing the possible factors with our derived factors:
- [tex]\( x + (13 - 4) \)[/tex]
- This simplifies to [tex]\( x + 9 \)[/tex], which does not match any of our derived factors.
- [tex]\( x - (13 + 4) \)[/tex]
- This simplifies to [tex]\( x - 17 \)[/tex], which does not match any of our derived factors.
- [tex]\( x + (4 + 13i) \)[/tex]
- This simplifies to [tex]\( x - (-4 - 13i) \)[/tex], which is not in our set of derived factors.
- [tex]\( x - (4 + 13i) \)[/tex]
- This exactly matches the derived factor [tex]\( x - (4 + 13i) \)[/tex].
### Conclusion
The correct factor of [tex]\( f(x) \)[/tex] from the given choices is:
[tex]\[ x - (4 + 13i) \][/tex]
This corresponds to choice 4.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.