Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Given the polynomial function [tex]\( f(x) \)[/tex] with rational coefficients, we are informed that two of its roots are 3 and [tex]\( \sqrt{7} \)[/tex].
When dealing with polynomials that have rational coefficients, a crucial property is that any irrational root must have its conjugate also as a root. The same concept applies to complex roots and their conjugates as follows:
1. If [tex]\( a + b\sqrt{c} \)[/tex] is a root, then [tex]\( a - b\sqrt{c} \)[/tex] must also be a root.
2. If [tex]\( a + bi \)[/tex] (complex root) is a root, then [tex]\( a - bi \)[/tex] must also be a root.
For the given polynomial:
- One of the roots is [tex]\( 3 \)[/tex]. Since 3 is rational, there is no additional root derived directly from it.
- Another root given is [tex]\( \sqrt{7} \)[/tex]. This is an irrational root.
Given that [tex]\( \sqrt{7} \)[/tex] is an irrational number, the property dictates that the conjugate [tex]\( -\sqrt{7} \)[/tex] must also be a root of the polynomial to ensure the coefficients remain rational.
Therefore, examining the given options for the roots that must also be present in the polynomial [tex]\( f(x) \)[/tex]:
- [tex]\( -\sqrt{7} \)[/tex]: This is the rational conjugate of [tex]\( \sqrt{7} \)[/tex], and hence it must indeed be a root.
- [tex]\( i\sqrt{7} \)[/tex]: This would introduce imaginary coefficients, conflicting with the requirement of rational coefficients.
- [tex]\( -3 \)[/tex]: There is no requirement from the given roots that [tex]\( -3 \)[/tex] must be a root.
- [tex]\( 3i \)[/tex]: Similarly, this would introduce complex coefficients, which are not allowed since the polynomial has rational coefficients.
Thus, the correct root that must also be part of [tex]\( f(x) \)[/tex] in addition to the given roots is:
[tex]\[ -\sqrt{7} \][/tex]
Therefore, the answer is:
[tex]\[ -\sqrt{7} \][/tex]
When dealing with polynomials that have rational coefficients, a crucial property is that any irrational root must have its conjugate also as a root. The same concept applies to complex roots and their conjugates as follows:
1. If [tex]\( a + b\sqrt{c} \)[/tex] is a root, then [tex]\( a - b\sqrt{c} \)[/tex] must also be a root.
2. If [tex]\( a + bi \)[/tex] (complex root) is a root, then [tex]\( a - bi \)[/tex] must also be a root.
For the given polynomial:
- One of the roots is [tex]\( 3 \)[/tex]. Since 3 is rational, there is no additional root derived directly from it.
- Another root given is [tex]\( \sqrt{7} \)[/tex]. This is an irrational root.
Given that [tex]\( \sqrt{7} \)[/tex] is an irrational number, the property dictates that the conjugate [tex]\( -\sqrt{7} \)[/tex] must also be a root of the polynomial to ensure the coefficients remain rational.
Therefore, examining the given options for the roots that must also be present in the polynomial [tex]\( f(x) \)[/tex]:
- [tex]\( -\sqrt{7} \)[/tex]: This is the rational conjugate of [tex]\( \sqrt{7} \)[/tex], and hence it must indeed be a root.
- [tex]\( i\sqrt{7} \)[/tex]: This would introduce imaginary coefficients, conflicting with the requirement of rational coefficients.
- [tex]\( -3 \)[/tex]: There is no requirement from the given roots that [tex]\( -3 \)[/tex] must be a root.
- [tex]\( 3i \)[/tex]: Similarly, this would introduce complex coefficients, which are not allowed since the polynomial has rational coefficients.
Thus, the correct root that must also be part of [tex]\( f(x) \)[/tex] in addition to the given roots is:
[tex]\[ -\sqrt{7} \][/tex]
Therefore, the answer is:
[tex]\[ -\sqrt{7} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.