Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Ask your questions and receive precise answers from experienced professionals across different disciplines. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the domain of the function [tex]\( y = \sqrt[3]{x-1} \)[/tex], we must identify the set of all permissible input values [tex]\( x \)[/tex] for which the function is defined.
The given function involves the cube root of [tex]\( x-1 \)[/tex]. The cube root, denoted by [tex]\( \sqrt[3]{\cdot} \)[/tex], is defined for all real numbers. Unlike the square root, the cube root can take both positive and negative numbers, as well as zero. This is a key characteristic of cubic roots: they have a real number output for any real number input.
Thus, we need to ensure that [tex]\( x-1 \)[/tex] can take any real value. Since there are no restrictions that preclude any particular value of [tex]\( x \)[/tex], the expression [tex]\( x-1 \)[/tex] can indeed be any real number.
By setting [tex]\( x - 1 \)[/tex] to range over all real numbers, we observe that:
[tex]\[ x \in (-\infty, \infty) \][/tex]
Therefore, we conclude that the domain of [tex]\( y = \sqrt[3]{x-1} \)[/tex] is:
[tex]\[ -\infty < x < \infty \][/tex]
Thus, the correct choice from the given options is:
[tex]\[ -\infty < x < \infty \][/tex]
The given function involves the cube root of [tex]\( x-1 \)[/tex]. The cube root, denoted by [tex]\( \sqrt[3]{\cdot} \)[/tex], is defined for all real numbers. Unlike the square root, the cube root can take both positive and negative numbers, as well as zero. This is a key characteristic of cubic roots: they have a real number output for any real number input.
Thus, we need to ensure that [tex]\( x-1 \)[/tex] can take any real value. Since there are no restrictions that preclude any particular value of [tex]\( x \)[/tex], the expression [tex]\( x-1 \)[/tex] can indeed be any real number.
By setting [tex]\( x - 1 \)[/tex] to range over all real numbers, we observe that:
[tex]\[ x \in (-\infty, \infty) \][/tex]
Therefore, we conclude that the domain of [tex]\( y = \sqrt[3]{x-1} \)[/tex] is:
[tex]\[ -\infty < x < \infty \][/tex]
Thus, the correct choice from the given options is:
[tex]\[ -\infty < x < \infty \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.