Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the polynomial function of lowest degree with lead coefficient 1 and roots [tex]\(i, -2\)[/tex], and [tex]\(2\)[/tex], we need to follow these steps:
1. Identify the given roots: The roots of the polynomial are [tex]\(i, -2\)[/tex], and [tex]\(2\)[/tex].
2. Include the complex conjugate: Since [tex]\(i\)[/tex] is a root of the polynomial, its complex conjugate [tex]\(-i\)[/tex] must also be a root. Therefore, the complete set of roots is [tex]\(i, -i, -2,\)[/tex] and [tex]\(2\)[/tex].
3. Form the factors: Each root gives a factor of the polynomial:
- For [tex]\(i\)[/tex], the factor is [tex]\((x - i)\)[/tex].
- For [tex]\(-i\)[/tex], the factor is [tex]\((x + i)\)[/tex].
- For [tex]\(-2\)[/tex], the factor is [tex]\((x + 2)\)[/tex].
- For [tex]\(2\)[/tex], the factor is [tex]\((x - 2)\)[/tex].
4. Multiply the factors in pairs: Expand the polynomial step-by-step by multiplying these factors.
- First, multiply the factors involving [tex]\(i\)[/tex]:
[tex]\[ (x - i)(x + i) = x^2 - i^2 \][/tex]
Note that [tex]\(i^2 = -1\)[/tex], so:
[tex]\[ (x - i)(x + i) = x^2 - (-1) = x^2 + 1 \][/tex]
- Next, multiply the factors involving [tex]\(-2\)[/tex] and [tex]\(2\)[/tex]:
[tex]\[ (x + 2)(x - 2) = x^2 - 4 \][/tex]
5. Combine the results: Now, multiply the two quadratic expressions obtained:
[tex]\[ (x^2 + 1)(x^2 - 4) \][/tex]
6. Expand the product:
[tex]\[ (x^2 + 1)(x^2 - 4) = x^2(x^2 - 4) + 1(x^2 - 4) \][/tex]
Simplify the expression:
[tex]\[ x^2(x^2 - 4) + 1(x^2 - 4) = x^4 - 4x^2 + x^2 - 4 = x^4 - 3x^2 - 4 \][/tex]
Thus, the polynomial of the lowest degree with lead coefficient 1 and roots [tex]\(i, -i, -2\)[/tex], and [tex]\(2\)[/tex] is:
[tex]\[ f(x) = x^4 - 3x^2 - 4 \][/tex]
So the correct answer is:
[tex]\[ \boxed{f(x) = x^4 - 3 x^2 - 4} \][/tex]
1. Identify the given roots: The roots of the polynomial are [tex]\(i, -2\)[/tex], and [tex]\(2\)[/tex].
2. Include the complex conjugate: Since [tex]\(i\)[/tex] is a root of the polynomial, its complex conjugate [tex]\(-i\)[/tex] must also be a root. Therefore, the complete set of roots is [tex]\(i, -i, -2,\)[/tex] and [tex]\(2\)[/tex].
3. Form the factors: Each root gives a factor of the polynomial:
- For [tex]\(i\)[/tex], the factor is [tex]\((x - i)\)[/tex].
- For [tex]\(-i\)[/tex], the factor is [tex]\((x + i)\)[/tex].
- For [tex]\(-2\)[/tex], the factor is [tex]\((x + 2)\)[/tex].
- For [tex]\(2\)[/tex], the factor is [tex]\((x - 2)\)[/tex].
4. Multiply the factors in pairs: Expand the polynomial step-by-step by multiplying these factors.
- First, multiply the factors involving [tex]\(i\)[/tex]:
[tex]\[ (x - i)(x + i) = x^2 - i^2 \][/tex]
Note that [tex]\(i^2 = -1\)[/tex], so:
[tex]\[ (x - i)(x + i) = x^2 - (-1) = x^2 + 1 \][/tex]
- Next, multiply the factors involving [tex]\(-2\)[/tex] and [tex]\(2\)[/tex]:
[tex]\[ (x + 2)(x - 2) = x^2 - 4 \][/tex]
5. Combine the results: Now, multiply the two quadratic expressions obtained:
[tex]\[ (x^2 + 1)(x^2 - 4) \][/tex]
6. Expand the product:
[tex]\[ (x^2 + 1)(x^2 - 4) = x^2(x^2 - 4) + 1(x^2 - 4) \][/tex]
Simplify the expression:
[tex]\[ x^2(x^2 - 4) + 1(x^2 - 4) = x^4 - 4x^2 + x^2 - 4 = x^4 - 3x^2 - 4 \][/tex]
Thus, the polynomial of the lowest degree with lead coefficient 1 and roots [tex]\(i, -i, -2\)[/tex], and [tex]\(2\)[/tex] is:
[tex]\[ f(x) = x^4 - 3x^2 - 4 \][/tex]
So the correct answer is:
[tex]\[ \boxed{f(x) = x^4 - 3 x^2 - 4} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.