Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's carefully analyze each option to determine which one represents a function.
Definition of a function:
A function is a relation in which each element of the domain (all possible [tex]\(x\)[/tex]-values) is paired with exactly one element of the range (all possible [tex]\(y\)[/tex]-values). This means that no [tex]\(x\)[/tex]-value should be repeated with a different [tex]\(y\)[/tex]-value.
### Option A
[tex]\[ \begin{tabular}{|c|c|c|c|c|c|} \hline $x$ & 5 & -5 & 10 & 5 & -10 \\ \hline $y$ & 13 & -7 & 23 & 17 & -17 \\ \hline \end{tabular} \][/tex]
In this table, the [tex]\(x\)[/tex]-value 5 is associated with both 13 and 17. Since one [tex]\(x\)[/tex]-value maps to two different [tex]\(y\)[/tex]-values, this option does not represent a function.
### Option B
[tex]\[ \{(0, 2), (2, 0), (4, 3)\} \][/tex]
Here, each [tex]\(x\)[/tex]-value (0, 2, and 4) is paired with exactly one unique [tex]\(y\)[/tex]-value. There are no repeated [tex]\(x\)[/tex]-values with different [tex]\(y\)[/tex]-values. Therefore, this option represents a function.
### Option C
There is no Option C provided in the text.
### Option D
[tex]\[ \{(-7, -9), (-4, -9), (5, 15), (7, 19)\} \][/tex]
In this set, each [tex]\(x\)[/tex]-value (-7, -4, 5, and 7) is paired with exactly one unique [tex]\(y\)[/tex]-value. No [tex]\(x\)[/tex]-value is repeated here, which means this option also represents a function.
### Summary
Based on the given options, we find that:
- Option A is not a function because the [tex]\(x\)[/tex]-value 5 is associated with more than one [tex]\(y\)[/tex]-value.
- Option B is a function as each [tex]\(x\)[/tex]-value has a unique [tex]\(y\)[/tex]-value.
- Option D is also a function for the same reason.
Since we need to select one correct answer, we conclude that:
The correct answer is Option B.
Definition of a function:
A function is a relation in which each element of the domain (all possible [tex]\(x\)[/tex]-values) is paired with exactly one element of the range (all possible [tex]\(y\)[/tex]-values). This means that no [tex]\(x\)[/tex]-value should be repeated with a different [tex]\(y\)[/tex]-value.
### Option A
[tex]\[ \begin{tabular}{|c|c|c|c|c|c|} \hline $x$ & 5 & -5 & 10 & 5 & -10 \\ \hline $y$ & 13 & -7 & 23 & 17 & -17 \\ \hline \end{tabular} \][/tex]
In this table, the [tex]\(x\)[/tex]-value 5 is associated with both 13 and 17. Since one [tex]\(x\)[/tex]-value maps to two different [tex]\(y\)[/tex]-values, this option does not represent a function.
### Option B
[tex]\[ \{(0, 2), (2, 0), (4, 3)\} \][/tex]
Here, each [tex]\(x\)[/tex]-value (0, 2, and 4) is paired with exactly one unique [tex]\(y\)[/tex]-value. There are no repeated [tex]\(x\)[/tex]-values with different [tex]\(y\)[/tex]-values. Therefore, this option represents a function.
### Option C
There is no Option C provided in the text.
### Option D
[tex]\[ \{(-7, -9), (-4, -9), (5, 15), (7, 19)\} \][/tex]
In this set, each [tex]\(x\)[/tex]-value (-7, -4, 5, and 7) is paired with exactly one unique [tex]\(y\)[/tex]-value. No [tex]\(x\)[/tex]-value is repeated here, which means this option also represents a function.
### Summary
Based on the given options, we find that:
- Option A is not a function because the [tex]\(x\)[/tex]-value 5 is associated with more than one [tex]\(y\)[/tex]-value.
- Option B is a function as each [tex]\(x\)[/tex]-value has a unique [tex]\(y\)[/tex]-value.
- Option D is also a function for the same reason.
Since we need to select one correct answer, we conclude that:
The correct answer is Option B.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.