At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the limit of [tex]\(\lim_{x \rightarrow 0} \frac{\sin 7x}{3x}\)[/tex], we'll use well-established properties of limits and the behavior of the sine function near zero.
1. Understand the Limit Setup:
The expression we want to find the limit of as [tex]\(x\)[/tex] approaches 0 is [tex]\(\frac{\sin 7x}{3x}\)[/tex].
2. Key Limit Property:
Recall the fundamental trigonometric limit:
[tex]\[ \lim_{t \rightarrow 0} \frac{\sin t}{t} = 1 \][/tex]
We can use this property by manipulating our given limit to match this form.
3. Rewrite the Limit:
In order to use the fundamental limit property, we can rewrite [tex]\(\frac{\sin 7x}{3x}\)[/tex] in a more suitable form.
[tex]\[ \lim_{x \rightarrow 0} \frac{\sin 7x}{3x} \][/tex]
Notice that [tex]\( \sin 7x \)[/tex] involves a sine function argument of [tex]\(7x\)[/tex]. We want to separate this in a way that lets us use the [tex]\(\frac{\sin t}{t}\)[/tex] property.
4. Factor and Simplify:
Break down the expression:
[tex]\[ \frac{\sin 7x}{3x} = \frac{7 \sin 7x}{7 \cdot 3x} = \frac{7}{3} \cdot \frac{\sin 7x}{7x} \][/tex]
5. Apply the Key Limit Property:
Now we can use the limit property on [tex]\(\frac{\sin 7x}{7x}\)[/tex]. As [tex]\(x\)[/tex] approaches 0, [tex]\(7x\)[/tex] also approaches 0. Therefore:
[tex]\[ \lim_{x \rightarrow 0} \frac{\sin 7x}{7x} = 1 \][/tex]
6. Combine the Results:
Using the given property,
[tex]\[ \lim_{x \rightarrow 0} \left( \frac{7}{3} \cdot \frac{\sin 7x}{7x} \right) = \frac{7}{3} \cdot 1 = \frac{7}{3} \][/tex]
Therefore, the limit is:
[tex]\[ \lim_{x \rightarrow 0} \frac{\sin 7x}{3x} = \frac{7}{3} \][/tex]
1. Understand the Limit Setup:
The expression we want to find the limit of as [tex]\(x\)[/tex] approaches 0 is [tex]\(\frac{\sin 7x}{3x}\)[/tex].
2. Key Limit Property:
Recall the fundamental trigonometric limit:
[tex]\[ \lim_{t \rightarrow 0} \frac{\sin t}{t} = 1 \][/tex]
We can use this property by manipulating our given limit to match this form.
3. Rewrite the Limit:
In order to use the fundamental limit property, we can rewrite [tex]\(\frac{\sin 7x}{3x}\)[/tex] in a more suitable form.
[tex]\[ \lim_{x \rightarrow 0} \frac{\sin 7x}{3x} \][/tex]
Notice that [tex]\( \sin 7x \)[/tex] involves a sine function argument of [tex]\(7x\)[/tex]. We want to separate this in a way that lets us use the [tex]\(\frac{\sin t}{t}\)[/tex] property.
4. Factor and Simplify:
Break down the expression:
[tex]\[ \frac{\sin 7x}{3x} = \frac{7 \sin 7x}{7 \cdot 3x} = \frac{7}{3} \cdot \frac{\sin 7x}{7x} \][/tex]
5. Apply the Key Limit Property:
Now we can use the limit property on [tex]\(\frac{\sin 7x}{7x}\)[/tex]. As [tex]\(x\)[/tex] approaches 0, [tex]\(7x\)[/tex] also approaches 0. Therefore:
[tex]\[ \lim_{x \rightarrow 0} \frac{\sin 7x}{7x} = 1 \][/tex]
6. Combine the Results:
Using the given property,
[tex]\[ \lim_{x \rightarrow 0} \left( \frac{7}{3} \cdot \frac{\sin 7x}{7x} \right) = \frac{7}{3} \cdot 1 = \frac{7}{3} \][/tex]
Therefore, the limit is:
[tex]\[ \lim_{x \rightarrow 0} \frac{\sin 7x}{3x} = \frac{7}{3} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.