Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the limit of [tex]\(\lim_{x \rightarrow 0} \frac{\sin 7x}{3x}\)[/tex], we'll use well-established properties of limits and the behavior of the sine function near zero.
1. Understand the Limit Setup:
The expression we want to find the limit of as [tex]\(x\)[/tex] approaches 0 is [tex]\(\frac{\sin 7x}{3x}\)[/tex].
2. Key Limit Property:
Recall the fundamental trigonometric limit:
[tex]\[ \lim_{t \rightarrow 0} \frac{\sin t}{t} = 1 \][/tex]
We can use this property by manipulating our given limit to match this form.
3. Rewrite the Limit:
In order to use the fundamental limit property, we can rewrite [tex]\(\frac{\sin 7x}{3x}\)[/tex] in a more suitable form.
[tex]\[ \lim_{x \rightarrow 0} \frac{\sin 7x}{3x} \][/tex]
Notice that [tex]\( \sin 7x \)[/tex] involves a sine function argument of [tex]\(7x\)[/tex]. We want to separate this in a way that lets us use the [tex]\(\frac{\sin t}{t}\)[/tex] property.
4. Factor and Simplify:
Break down the expression:
[tex]\[ \frac{\sin 7x}{3x} = \frac{7 \sin 7x}{7 \cdot 3x} = \frac{7}{3} \cdot \frac{\sin 7x}{7x} \][/tex]
5. Apply the Key Limit Property:
Now we can use the limit property on [tex]\(\frac{\sin 7x}{7x}\)[/tex]. As [tex]\(x\)[/tex] approaches 0, [tex]\(7x\)[/tex] also approaches 0. Therefore:
[tex]\[ \lim_{x \rightarrow 0} \frac{\sin 7x}{7x} = 1 \][/tex]
6. Combine the Results:
Using the given property,
[tex]\[ \lim_{x \rightarrow 0} \left( \frac{7}{3} \cdot \frac{\sin 7x}{7x} \right) = \frac{7}{3} \cdot 1 = \frac{7}{3} \][/tex]
Therefore, the limit is:
[tex]\[ \lim_{x \rightarrow 0} \frac{\sin 7x}{3x} = \frac{7}{3} \][/tex]
1. Understand the Limit Setup:
The expression we want to find the limit of as [tex]\(x\)[/tex] approaches 0 is [tex]\(\frac{\sin 7x}{3x}\)[/tex].
2. Key Limit Property:
Recall the fundamental trigonometric limit:
[tex]\[ \lim_{t \rightarrow 0} \frac{\sin t}{t} = 1 \][/tex]
We can use this property by manipulating our given limit to match this form.
3. Rewrite the Limit:
In order to use the fundamental limit property, we can rewrite [tex]\(\frac{\sin 7x}{3x}\)[/tex] in a more suitable form.
[tex]\[ \lim_{x \rightarrow 0} \frac{\sin 7x}{3x} \][/tex]
Notice that [tex]\( \sin 7x \)[/tex] involves a sine function argument of [tex]\(7x\)[/tex]. We want to separate this in a way that lets us use the [tex]\(\frac{\sin t}{t}\)[/tex] property.
4. Factor and Simplify:
Break down the expression:
[tex]\[ \frac{\sin 7x}{3x} = \frac{7 \sin 7x}{7 \cdot 3x} = \frac{7}{3} \cdot \frac{\sin 7x}{7x} \][/tex]
5. Apply the Key Limit Property:
Now we can use the limit property on [tex]\(\frac{\sin 7x}{7x}\)[/tex]. As [tex]\(x\)[/tex] approaches 0, [tex]\(7x\)[/tex] also approaches 0. Therefore:
[tex]\[ \lim_{x \rightarrow 0} \frac{\sin 7x}{7x} = 1 \][/tex]
6. Combine the Results:
Using the given property,
[tex]\[ \lim_{x \rightarrow 0} \left( \frac{7}{3} \cdot \frac{\sin 7x}{7x} \right) = \frac{7}{3} \cdot 1 = \frac{7}{3} \][/tex]
Therefore, the limit is:
[tex]\[ \lim_{x \rightarrow 0} \frac{\sin 7x}{3x} = \frac{7}{3} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.