Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Which of the following is a true statement?

A. [tex]\frac{5}{6}\ \textgreater \ \frac{11}{12}[/tex]
B. [tex]\frac{9}{15}\ \textless \ \frac{4}{5}[/tex]
C. [tex]\frac{18}{27}=\frac{1}{3}[/tex]
D. [tex]\frac{3}{4}\ \textless \ \frac{2}{3}[/tex]


Sagot :

To determine which of the given statements is true, we need to compare each pair of fractions. Let’s go through them one by one:

1. First statement: [tex]\(\frac{5}{6} > \frac{11}{12}\)[/tex]

To compare [tex]\(\frac{5}{6}\)[/tex] and [tex]\(\frac{11}{12}\)[/tex], we should convert them to the same denominator. The least common denominator (LCD) of 6 and 12 is 12.
- Convert [tex]\(\frac{5}{6}\)[/tex] to an equivalent fraction with a denominator of 12:
[tex]\[ \frac{5}{6} = \frac{5 \times 2}{6 \times 2} = \frac{10}{12} \][/tex]
- Now compare [tex]\(\frac{10}{12}\)[/tex] with [tex]\(\frac{11}{12}\)[/tex]:
[tex]\[ \frac{10}{12} < \frac{11}{12} \][/tex]
Thus, [tex]\(\frac{5}{6} > \frac{11}{12}\)[/tex] is false.

2. Second statement: [tex]\(\frac{9}{15} < \frac{4}{5}\)[/tex]

To compare [tex]\(\frac{9}{15}\)[/tex] and [tex]\(\frac{4}{5}\)[/tex], we should convert them to the same denominator. The least common denominator (LCD) of 15 and 5 is 15.
- Convert [tex]\(\frac{4}{5}\)[/tex] to an equivalent fraction with a denominator of 15:
[tex]\[ \frac{4}{5} = \frac{4 \times 3}{5 \times 3} = \frac{12}{15} \][/tex]
- Now compare [tex]\(\frac{9}{15}\)[/tex] with [tex]\(\frac{12}{15}\)[/tex]:
[tex]\[ \frac{9}{15} < \frac{12}{15} \][/tex]
Thus, [tex]\(\frac{9}{15} < \frac{4}{5}\)[/tex] is true.

3. Third statement: [tex]\(\frac{18}{27} = \frac{1}{3}\)[/tex]

To compare [tex]\(\frac{18}{27}\)[/tex] and [tex]\(\frac{1}{3}\)[/tex], we can simplify the fraction [tex]\(\frac{18}{27}\)[/tex]:
- Simplify [tex]\(\frac{18}{27}\)[/tex] by dividing the numerator and the denominator by their greatest common divisor (GCD), which is 9:
[tex]\[ \frac{18}{27} = \frac{18 \div 9}{27 \div 9} = \frac{2}{3} \][/tex]
- Now compare [tex]\(\frac{2}{3}\)[/tex] with [tex]\(\frac{1}{3}\)[/tex]:
[tex]\[ \frac{2}{3} \neq \frac{1}{3} \][/tex]
Thus, [tex]\(\frac{18}{27} = \frac{1}{3}\)[/tex] is false.

4. Fourth statement: [tex]\(\frac{3}{4} < \frac{2}{3}\)[/tex]

To compare [tex]\(\frac{3}{4}\)[/tex] and [tex]\(\frac{2}{3}\)[/tex], we should convert them to the same denominator. The least common denominator (LCD) of 4 and 3 is 12.
- Convert [tex]\(\frac{3}{4}\)[/tex] to an equivalent fraction with a denominator of 12:
[tex]\[ \frac{3}{4} = \frac{3 \times 3}{4 \times 3} = \frac{9}{12} \][/tex]
- Convert [tex]\(\frac{2}{3}\)[/tex] to an equivalent fraction with a denominator of 12:
[tex]\[ \frac{2}{3} = \frac{2 \times 4}{3 \times 4} = \frac{8}{12} \][/tex]
- Now compare [tex]\(\frac{9}{12}\)[/tex] with [tex]\(\frac{8}{12}\)[/tex]:
[tex]\[ \frac{9}{12} > \frac{8}{12} \][/tex]
Thus, [tex]\(\frac{3}{4} < \frac{2}{3}\)[/tex] is false.

After evaluating all the statements, the only true statement is the second one:
[tex]\(\boxed{2}\)[/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.