At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine which of the given statements is true, we need to compare each pair of fractions. Let’s go through them one by one:
1. First statement: [tex]\(\frac{5}{6} > \frac{11}{12}\)[/tex]
To compare [tex]\(\frac{5}{6}\)[/tex] and [tex]\(\frac{11}{12}\)[/tex], we should convert them to the same denominator. The least common denominator (LCD) of 6 and 12 is 12.
- Convert [tex]\(\frac{5}{6}\)[/tex] to an equivalent fraction with a denominator of 12:
[tex]\[ \frac{5}{6} = \frac{5 \times 2}{6 \times 2} = \frac{10}{12} \][/tex]
- Now compare [tex]\(\frac{10}{12}\)[/tex] with [tex]\(\frac{11}{12}\)[/tex]:
[tex]\[ \frac{10}{12} < \frac{11}{12} \][/tex]
Thus, [tex]\(\frac{5}{6} > \frac{11}{12}\)[/tex] is false.
2. Second statement: [tex]\(\frac{9}{15} < \frac{4}{5}\)[/tex]
To compare [tex]\(\frac{9}{15}\)[/tex] and [tex]\(\frac{4}{5}\)[/tex], we should convert them to the same denominator. The least common denominator (LCD) of 15 and 5 is 15.
- Convert [tex]\(\frac{4}{5}\)[/tex] to an equivalent fraction with a denominator of 15:
[tex]\[ \frac{4}{5} = \frac{4 \times 3}{5 \times 3} = \frac{12}{15} \][/tex]
- Now compare [tex]\(\frac{9}{15}\)[/tex] with [tex]\(\frac{12}{15}\)[/tex]:
[tex]\[ \frac{9}{15} < \frac{12}{15} \][/tex]
Thus, [tex]\(\frac{9}{15} < \frac{4}{5}\)[/tex] is true.
3. Third statement: [tex]\(\frac{18}{27} = \frac{1}{3}\)[/tex]
To compare [tex]\(\frac{18}{27}\)[/tex] and [tex]\(\frac{1}{3}\)[/tex], we can simplify the fraction [tex]\(\frac{18}{27}\)[/tex]:
- Simplify [tex]\(\frac{18}{27}\)[/tex] by dividing the numerator and the denominator by their greatest common divisor (GCD), which is 9:
[tex]\[ \frac{18}{27} = \frac{18 \div 9}{27 \div 9} = \frac{2}{3} \][/tex]
- Now compare [tex]\(\frac{2}{3}\)[/tex] with [tex]\(\frac{1}{3}\)[/tex]:
[tex]\[ \frac{2}{3} \neq \frac{1}{3} \][/tex]
Thus, [tex]\(\frac{18}{27} = \frac{1}{3}\)[/tex] is false.
4. Fourth statement: [tex]\(\frac{3}{4} < \frac{2}{3}\)[/tex]
To compare [tex]\(\frac{3}{4}\)[/tex] and [tex]\(\frac{2}{3}\)[/tex], we should convert them to the same denominator. The least common denominator (LCD) of 4 and 3 is 12.
- Convert [tex]\(\frac{3}{4}\)[/tex] to an equivalent fraction with a denominator of 12:
[tex]\[ \frac{3}{4} = \frac{3 \times 3}{4 \times 3} = \frac{9}{12} \][/tex]
- Convert [tex]\(\frac{2}{3}\)[/tex] to an equivalent fraction with a denominator of 12:
[tex]\[ \frac{2}{3} = \frac{2 \times 4}{3 \times 4} = \frac{8}{12} \][/tex]
- Now compare [tex]\(\frac{9}{12}\)[/tex] with [tex]\(\frac{8}{12}\)[/tex]:
[tex]\[ \frac{9}{12} > \frac{8}{12} \][/tex]
Thus, [tex]\(\frac{3}{4} < \frac{2}{3}\)[/tex] is false.
After evaluating all the statements, the only true statement is the second one:
[tex]\(\boxed{2}\)[/tex]
1. First statement: [tex]\(\frac{5}{6} > \frac{11}{12}\)[/tex]
To compare [tex]\(\frac{5}{6}\)[/tex] and [tex]\(\frac{11}{12}\)[/tex], we should convert them to the same denominator. The least common denominator (LCD) of 6 and 12 is 12.
- Convert [tex]\(\frac{5}{6}\)[/tex] to an equivalent fraction with a denominator of 12:
[tex]\[ \frac{5}{6} = \frac{5 \times 2}{6 \times 2} = \frac{10}{12} \][/tex]
- Now compare [tex]\(\frac{10}{12}\)[/tex] with [tex]\(\frac{11}{12}\)[/tex]:
[tex]\[ \frac{10}{12} < \frac{11}{12} \][/tex]
Thus, [tex]\(\frac{5}{6} > \frac{11}{12}\)[/tex] is false.
2. Second statement: [tex]\(\frac{9}{15} < \frac{4}{5}\)[/tex]
To compare [tex]\(\frac{9}{15}\)[/tex] and [tex]\(\frac{4}{5}\)[/tex], we should convert them to the same denominator. The least common denominator (LCD) of 15 and 5 is 15.
- Convert [tex]\(\frac{4}{5}\)[/tex] to an equivalent fraction with a denominator of 15:
[tex]\[ \frac{4}{5} = \frac{4 \times 3}{5 \times 3} = \frac{12}{15} \][/tex]
- Now compare [tex]\(\frac{9}{15}\)[/tex] with [tex]\(\frac{12}{15}\)[/tex]:
[tex]\[ \frac{9}{15} < \frac{12}{15} \][/tex]
Thus, [tex]\(\frac{9}{15} < \frac{4}{5}\)[/tex] is true.
3. Third statement: [tex]\(\frac{18}{27} = \frac{1}{3}\)[/tex]
To compare [tex]\(\frac{18}{27}\)[/tex] and [tex]\(\frac{1}{3}\)[/tex], we can simplify the fraction [tex]\(\frac{18}{27}\)[/tex]:
- Simplify [tex]\(\frac{18}{27}\)[/tex] by dividing the numerator and the denominator by their greatest common divisor (GCD), which is 9:
[tex]\[ \frac{18}{27} = \frac{18 \div 9}{27 \div 9} = \frac{2}{3} \][/tex]
- Now compare [tex]\(\frac{2}{3}\)[/tex] with [tex]\(\frac{1}{3}\)[/tex]:
[tex]\[ \frac{2}{3} \neq \frac{1}{3} \][/tex]
Thus, [tex]\(\frac{18}{27} = \frac{1}{3}\)[/tex] is false.
4. Fourth statement: [tex]\(\frac{3}{4} < \frac{2}{3}\)[/tex]
To compare [tex]\(\frac{3}{4}\)[/tex] and [tex]\(\frac{2}{3}\)[/tex], we should convert them to the same denominator. The least common denominator (LCD) of 4 and 3 is 12.
- Convert [tex]\(\frac{3}{4}\)[/tex] to an equivalent fraction with a denominator of 12:
[tex]\[ \frac{3}{4} = \frac{3 \times 3}{4 \times 3} = \frac{9}{12} \][/tex]
- Convert [tex]\(\frac{2}{3}\)[/tex] to an equivalent fraction with a denominator of 12:
[tex]\[ \frac{2}{3} = \frac{2 \times 4}{3 \times 4} = \frac{8}{12} \][/tex]
- Now compare [tex]\(\frac{9}{12}\)[/tex] with [tex]\(\frac{8}{12}\)[/tex]:
[tex]\[ \frac{9}{12} > \frac{8}{12} \][/tex]
Thus, [tex]\(\frac{3}{4} < \frac{2}{3}\)[/tex] is false.
After evaluating all the statements, the only true statement is the second one:
[tex]\(\boxed{2}\)[/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.