At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Assume that all variables are positive.

[tex]\[ \log \frac{x}{y^5} = \][/tex]


Sagot :

To solve the expression [tex]\(\log \frac{x}{y^5}\)[/tex], we need to apply the properties of logarithms. Here’s a detailed, step-by-step solution:

1. Understand the Expression:
We need to take the logarithm of the fraction [tex]\(\frac{x}{y^5}\)[/tex].

2. Logarithm of a Quotient:
One of the key properties of logarithms is that the logarithm of a quotient is equal to the difference of the logarithms. In mathematical terms:
[tex]\[ \log \left(\frac{a}{b}\right) = \log (a) - \log (b) \][/tex]
Here, [tex]\(a = x\)[/tex] and [tex]\(b = y^5\)[/tex], so:
[tex]\[ \log \left(\frac{x}{y^5}\right) = \log (x) - \log (y^5) \][/tex]

3. Logarithm of a Power:
Another useful property of logarithms is that the logarithm of a power can be expressed as the exponent times the logarithm of the base. In mathematical terms:
[tex]\[ \log (a^b) = b \log (a) \][/tex]
Here, [tex]\(a = y\)[/tex] and [tex]\(b = 5\)[/tex], so:
[tex]\[ \log (y^5) = 5 \log (y) \][/tex]

4. Substitute the Logarithm of the Power:
Substitute [tex]\(\log (y^5)\)[/tex] back into our expression:
[tex]\[ \log \left(\frac{x}{y^5}\right) = \log (x) - 5 \log (y) \][/tex]

Therefore, the simplified expression for [tex]\(\log \frac{x}{y^5}\)[/tex] is:
[tex]\[ \log \left(\frac{x}{y^5}\right) = \log (x) - 5 \log (y) \][/tex]