Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Sure, let’s factor the expression [tex]\(5ab(x + 6) - 4(x + 6)\)[/tex] completely, step-by-step.
### Step 1: Identify the common factor
First, notice that both terms [tex]\(5ab(x + 6)\)[/tex] and [tex]\(-4(x + 6)\)[/tex] have a common factor: [tex]\((x + 6)\)[/tex].
### Step 2: Factor out the common term
We can factor out [tex]\((x + 6)\)[/tex] from each term in the expression:
[tex]\[ 5ab(x + 6) - 4(x + 6) \][/tex]
When you factor out [tex]\((x + 6)\)[/tex], you effectively remove it from each term:
[tex]\[ (x + 6)(5ab) - (x + 6)(4) \][/tex]
### Step 3: Simplify the expression inside the parentheses
Now, combine the terms inside the parentheses:
[tex]\[ (x + 6) [5ab - 4] \][/tex]
The expression inside the parentheses is now simplified to [tex]\(5ab - 4\)[/tex].
### Final Step: Write the completely factored expression
Therefore, the completely factored form of the given expression is:
[tex]\[ (x + 6)(5ab - 4) \][/tex]
### Conclusion
The fully factored form of [tex]\(5ab(x + 6) - 4(x + 6)\)[/tex] is:
[tex]\[ \boxed{(x + 6)(5ab - 4)} \][/tex]
### Step 1: Identify the common factor
First, notice that both terms [tex]\(5ab(x + 6)\)[/tex] and [tex]\(-4(x + 6)\)[/tex] have a common factor: [tex]\((x + 6)\)[/tex].
### Step 2: Factor out the common term
We can factor out [tex]\((x + 6)\)[/tex] from each term in the expression:
[tex]\[ 5ab(x + 6) - 4(x + 6) \][/tex]
When you factor out [tex]\((x + 6)\)[/tex], you effectively remove it from each term:
[tex]\[ (x + 6)(5ab) - (x + 6)(4) \][/tex]
### Step 3: Simplify the expression inside the parentheses
Now, combine the terms inside the parentheses:
[tex]\[ (x + 6) [5ab - 4] \][/tex]
The expression inside the parentheses is now simplified to [tex]\(5ab - 4\)[/tex].
### Final Step: Write the completely factored expression
Therefore, the completely factored form of the given expression is:
[tex]\[ (x + 6)(5ab - 4) \][/tex]
### Conclusion
The fully factored form of [tex]\(5ab(x + 6) - 4(x + 6)\)[/tex] is:
[tex]\[ \boxed{(x + 6)(5ab - 4)} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.