Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Sure! The empirical rule, also known as the 68-95-99.7 rule, applies to any variable whose distribution is approximately normal. Here's a detailed explanation of this rule with the specified properties:
1. Property 1: Approximately 68% of all possible observations lie within one standard deviation to either side of the mean.
- This means that if you consider all the data points in a normal distribution, about 68% of them will fall within the range of the mean (µ) minus one standard deviation (σ) to the mean plus one standard deviation (µ ± 1σ).
2. Property 2: Approximately 95% of all possible observations lie within two standard deviations to either side of the mean.
- Similarly, about 95% of the data points will fall within the range of the mean minus two standard deviations to the mean plus two standard deviations (µ ± 2σ).
3. Property 3: Approximately 99.7% of all possible observations lie within three standard deviations to either side of the mean.
- Finally, about 99.7% of the data points will be within the range of the mean minus three standard deviations to the mean plus three standard deviations (µ ± 3σ).
So, summarizing the empirical rule for a normal distribution:
1. 68% of observations are within one standard deviation (µ ± 1σ) of the mean.
2. 95% of observations are within two standard deviations (µ ± 2σ) of the mean.
3. 99.7% of observations are within three standard deviations (µ ± 3σ) of the mean.
These properties are key to understanding the distribution of data in a normal distribution and can be very useful for statistical analysis and probability estimates.
1. Property 1: Approximately 68% of all possible observations lie within one standard deviation to either side of the mean.
- This means that if you consider all the data points in a normal distribution, about 68% of them will fall within the range of the mean (µ) minus one standard deviation (σ) to the mean plus one standard deviation (µ ± 1σ).
2. Property 2: Approximately 95% of all possible observations lie within two standard deviations to either side of the mean.
- Similarly, about 95% of the data points will fall within the range of the mean minus two standard deviations to the mean plus two standard deviations (µ ± 2σ).
3. Property 3: Approximately 99.7% of all possible observations lie within three standard deviations to either side of the mean.
- Finally, about 99.7% of the data points will be within the range of the mean minus three standard deviations to the mean plus three standard deviations (µ ± 3σ).
So, summarizing the empirical rule for a normal distribution:
1. 68% of observations are within one standard deviation (µ ± 1σ) of the mean.
2. 95% of observations are within two standard deviations (µ ± 2σ) of the mean.
3. 99.7% of observations are within three standard deviations (µ ± 3σ) of the mean.
These properties are key to understanding the distribution of data in a normal distribution and can be very useful for statistical analysis and probability estimates.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.