Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Question 1 of 20:

What is the slope of the line that has the equation [tex][tex]$4x + 2y = 12$[/tex][/tex]?

A. 2
B. 6
C. -2
D. 3

Sagot :

To determine the slope of the line given by the equation [tex]\(4x + 2y = 12\)[/tex], we need to convert this equation into its slope-intercept form, which is [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] represents the slope of the line.

Here are the steps to do that:

1. Start with the given equation:
[tex]\[ 4x + 2y = 12 \][/tex]

2. Isolate the [tex]\(y\)[/tex] term by first subtracting [tex]\(4x\)[/tex] from both sides of the equation:
[tex]\[ 2y = -4x + 12 \][/tex]

3. Next, solve for [tex]\(y\)[/tex] by dividing every term in the equation by 2:
[tex]\[ y = -2x + 6 \][/tex]

In the equation [tex]\(y = -2x + 6\)[/tex], the coefficient of [tex]\(x\)[/tex] is the slope [tex]\(m\)[/tex].

Therefore, the slope of the line is:
[tex]\[ \boxed{-2} \][/tex]

So the correct answer is:
C. -2