Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find out how much water a spherical ball will displace when submerged in a container, we need to calculate the volume of the sphere. Here are the steps to solve this problem:
1. Determine the diameter of the ball:
The diameter of the spherical ball is given as 10 cm.
2. Calculate the radius of the sphere:
The radius ([tex]\( r \)[/tex]) is half of the diameter.
[tex]\[ r = \frac{\text{diameter}}{2} = \frac{10 \text{ cm}}{2} = 5 \text{ cm} \][/tex]
3. Use the formula for the volume of a sphere:
The volume ([tex]\( V \)[/tex]) of a sphere is given by the formula
[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]
Where [tex]\( \pi \)[/tex] (pi) is approximately 3.14159 and [tex]\( r \)[/tex] is the radius.
4. Substitute the radius into the volume formula:
[tex]\[ V = \frac{4}{3} \pi (5 \text{ cm})^3 \][/tex]
5. Calculate the volume:
[tex]\[ V = \frac{4}{3} \pi (125 \text{ cm}^3) \approx \frac{4}{3} \times 3.14159 \times 125 \text{ cm}^3 \][/tex]
[tex]\[ V \approx 523.5987755982989 \text{ cm}^3 \][/tex]
Therefore, the spherical ball with a diameter of 10 cm will displace approximately 523.6 cm³ of water when submerged.
1. Determine the diameter of the ball:
The diameter of the spherical ball is given as 10 cm.
2. Calculate the radius of the sphere:
The radius ([tex]\( r \)[/tex]) is half of the diameter.
[tex]\[ r = \frac{\text{diameter}}{2} = \frac{10 \text{ cm}}{2} = 5 \text{ cm} \][/tex]
3. Use the formula for the volume of a sphere:
The volume ([tex]\( V \)[/tex]) of a sphere is given by the formula
[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]
Where [tex]\( \pi \)[/tex] (pi) is approximately 3.14159 and [tex]\( r \)[/tex] is the radius.
4. Substitute the radius into the volume formula:
[tex]\[ V = \frac{4}{3} \pi (5 \text{ cm})^3 \][/tex]
5. Calculate the volume:
[tex]\[ V = \frac{4}{3} \pi (125 \text{ cm}^3) \approx \frac{4}{3} \times 3.14159 \times 125 \text{ cm}^3 \][/tex]
[tex]\[ V \approx 523.5987755982989 \text{ cm}^3 \][/tex]
Therefore, the spherical ball with a diameter of 10 cm will displace approximately 523.6 cm³ of water when submerged.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.