Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find out how much water a spherical ball will displace when submerged in a container, we need to calculate the volume of the sphere. Here are the steps to solve this problem:
1. Determine the diameter of the ball:
The diameter of the spherical ball is given as 10 cm.
2. Calculate the radius of the sphere:
The radius ([tex]\( r \)[/tex]) is half of the diameter.
[tex]\[ r = \frac{\text{diameter}}{2} = \frac{10 \text{ cm}}{2} = 5 \text{ cm} \][/tex]
3. Use the formula for the volume of a sphere:
The volume ([tex]\( V \)[/tex]) of a sphere is given by the formula
[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]
Where [tex]\( \pi \)[/tex] (pi) is approximately 3.14159 and [tex]\( r \)[/tex] is the radius.
4. Substitute the radius into the volume formula:
[tex]\[ V = \frac{4}{3} \pi (5 \text{ cm})^3 \][/tex]
5. Calculate the volume:
[tex]\[ V = \frac{4}{3} \pi (125 \text{ cm}^3) \approx \frac{4}{3} \times 3.14159 \times 125 \text{ cm}^3 \][/tex]
[tex]\[ V \approx 523.5987755982989 \text{ cm}^3 \][/tex]
Therefore, the spherical ball with a diameter of 10 cm will displace approximately 523.6 cm³ of water when submerged.
1. Determine the diameter of the ball:
The diameter of the spherical ball is given as 10 cm.
2. Calculate the radius of the sphere:
The radius ([tex]\( r \)[/tex]) is half of the diameter.
[tex]\[ r = \frac{\text{diameter}}{2} = \frac{10 \text{ cm}}{2} = 5 \text{ cm} \][/tex]
3. Use the formula for the volume of a sphere:
The volume ([tex]\( V \)[/tex]) of a sphere is given by the formula
[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]
Where [tex]\( \pi \)[/tex] (pi) is approximately 3.14159 and [tex]\( r \)[/tex] is the radius.
4. Substitute the radius into the volume formula:
[tex]\[ V = \frac{4}{3} \pi (5 \text{ cm})^3 \][/tex]
5. Calculate the volume:
[tex]\[ V = \frac{4}{3} \pi (125 \text{ cm}^3) \approx \frac{4}{3} \times 3.14159 \times 125 \text{ cm}^3 \][/tex]
[tex]\[ V \approx 523.5987755982989 \text{ cm}^3 \][/tex]
Therefore, the spherical ball with a diameter of 10 cm will displace approximately 523.6 cm³ of water when submerged.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.