Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the equation of a line in standard form [tex]\(Ax + By = C\)[/tex] that passes through the points [tex]\((2, 6)\)[/tex] and [tex]\((6, 18)\)[/tex], follow these steps:
1. Calculate the slope [tex]\(m\)[/tex] of the line:
The formula for the slope between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the given points [tex]\((2, 6)\)[/tex] and [tex]\((6, 18)\)[/tex]:
[tex]\[ m = \frac{18 - 6}{6 - 2} = \frac{12}{4} = 3 \][/tex]
2. Use the point-slope form of the equation:
The point-slope form is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Substituting the slope [tex]\(m = 3\)[/tex] and the point [tex]\((2, 6)\)[/tex]:
[tex]\[ y - 6 = 3(x - 2) \][/tex]
Simplify this equation:
[tex]\[ y - 6 = 3x - 6 \][/tex]
Adding 6 to both sides to get it into slope-intercept form [tex]\(y = mx + b\)[/tex]:
[tex]\[ y = 3x \][/tex]
3. Convert the slope-intercept form [tex]\(y = 3x\)[/tex] to standard form:
The standard form of a linear equation is [tex]\(Ax + By = C\)[/tex]. To convert [tex]\(y = 3x\)[/tex] into this form, rewrite it as:
[tex]\[ 3x - y = 0 \][/tex]
Therefore, the equation in standard form of the line passing through the points [tex]\((2, 6)\)[/tex] and [tex]\((6, 18)\)[/tex] is:
[tex]\[ 3x - y = 0 \][/tex]
1. Calculate the slope [tex]\(m\)[/tex] of the line:
The formula for the slope between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the given points [tex]\((2, 6)\)[/tex] and [tex]\((6, 18)\)[/tex]:
[tex]\[ m = \frac{18 - 6}{6 - 2} = \frac{12}{4} = 3 \][/tex]
2. Use the point-slope form of the equation:
The point-slope form is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Substituting the slope [tex]\(m = 3\)[/tex] and the point [tex]\((2, 6)\)[/tex]:
[tex]\[ y - 6 = 3(x - 2) \][/tex]
Simplify this equation:
[tex]\[ y - 6 = 3x - 6 \][/tex]
Adding 6 to both sides to get it into slope-intercept form [tex]\(y = mx + b\)[/tex]:
[tex]\[ y = 3x \][/tex]
3. Convert the slope-intercept form [tex]\(y = 3x\)[/tex] to standard form:
The standard form of a linear equation is [tex]\(Ax + By = C\)[/tex]. To convert [tex]\(y = 3x\)[/tex] into this form, rewrite it as:
[tex]\[ 3x - y = 0 \][/tex]
Therefore, the equation in standard form of the line passing through the points [tex]\((2, 6)\)[/tex] and [tex]\((6, 18)\)[/tex] is:
[tex]\[ 3x - y = 0 \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.