Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's solve the problem step-by-step:
### (a) Five-number summary
The five-number summary includes:
1. Minimum value
2. First quartile (Q1)
3. Median
4. Third quartile (Q3)
5. Maximum value
Given the data set: [tex]\(\{28, 34, 27, 42, 52, 15\}\)[/tex]
- Minimum: The smallest value in the set is [tex]\(15\)[/tex].
- First quartile (Q1): The 25th percentile of the data is [tex]\(27.25\)[/tex].
- Median: The middle value of the ordered data set is [tex]\(31.0\)[/tex].
- Third quartile (Q3): The 75th percentile of the data is [tex]\(40.0\)[/tex].
- Maximum: The largest value in the set is [tex]\(52\)[/tex].
So, the five-number summary is:
[tex]\[ (15, 27.25, 31.0, 40.0, 52) \][/tex]
### (b) Mean of the data set
The mean, denoted as [tex]\(\bar{x}\)[/tex], is the average of the data values.
Given the data set, the mean is calculated as:
[tex]\[ \bar{x} = \frac{28 + 34 + 27 + 42 + 52 + 15}{6} = 33.0 \][/tex]
### (c) Sum of the squares of the differences between each data value and the mean
We will use the table to organize our work:
[tex]\[ \begin{array}{|l|l|l|} \hline x & x - \bar{x} & (x - \bar{x})^2 \\ \hline 28 & 28 - 33.0 = -5.0 & (-5.0)^2 = 25.0 \\ 34 & 34 - 33.0 = 1.0 & (1.0)^2 = 1.0 \\ 27 & 27 - 33.0 = -6.0 & (-6.0)^2 = 36.0 \\ 42 & 42 - 33.0 = 9.0 & (9.0)^2 = 81.0 \\ 52 & 52 - 33.0 = 19.0 & (19.0)^2 = 361.0 \\ 15 & 15 - 33.0 = -18.0 & (-18.0)^2 = 324.0 \\ \hline & & \text{Sum: } 828.0 \\ \hline \end{array} \][/tex]
So, the sum of the squares of the differences between each data value and the mean is [tex]\(828.0\)[/tex].
### (d) Standard deviation of the data set
The standard deviation provides a measure of the spread of the data values. Since we are dealing with a population (not a sample), we use the following formula for standard deviation [tex]\(\sigma\)[/tex]:
[tex]\[ \sigma = \sqrt{\frac{\sum (x - \bar{x})^2}{N}} \][/tex]
Where [tex]\(N\)[/tex] is the number of data values (in this case, 6).
Given that the sum from Part (c) is [tex]\(828.0\)[/tex]:
[tex]\[ \sigma = \sqrt{\frac{828.0}{6}} = \sqrt{138.0} \approx 11.7473 \][/tex]
Therefore, the standard deviation of the data set is approximately [tex]\(11.7473\)[/tex].
### (a) Five-number summary
The five-number summary includes:
1. Minimum value
2. First quartile (Q1)
3. Median
4. Third quartile (Q3)
5. Maximum value
Given the data set: [tex]\(\{28, 34, 27, 42, 52, 15\}\)[/tex]
- Minimum: The smallest value in the set is [tex]\(15\)[/tex].
- First quartile (Q1): The 25th percentile of the data is [tex]\(27.25\)[/tex].
- Median: The middle value of the ordered data set is [tex]\(31.0\)[/tex].
- Third quartile (Q3): The 75th percentile of the data is [tex]\(40.0\)[/tex].
- Maximum: The largest value in the set is [tex]\(52\)[/tex].
So, the five-number summary is:
[tex]\[ (15, 27.25, 31.0, 40.0, 52) \][/tex]
### (b) Mean of the data set
The mean, denoted as [tex]\(\bar{x}\)[/tex], is the average of the data values.
Given the data set, the mean is calculated as:
[tex]\[ \bar{x} = \frac{28 + 34 + 27 + 42 + 52 + 15}{6} = 33.0 \][/tex]
### (c) Sum of the squares of the differences between each data value and the mean
We will use the table to organize our work:
[tex]\[ \begin{array}{|l|l|l|} \hline x & x - \bar{x} & (x - \bar{x})^2 \\ \hline 28 & 28 - 33.0 = -5.0 & (-5.0)^2 = 25.0 \\ 34 & 34 - 33.0 = 1.0 & (1.0)^2 = 1.0 \\ 27 & 27 - 33.0 = -6.0 & (-6.0)^2 = 36.0 \\ 42 & 42 - 33.0 = 9.0 & (9.0)^2 = 81.0 \\ 52 & 52 - 33.0 = 19.0 & (19.0)^2 = 361.0 \\ 15 & 15 - 33.0 = -18.0 & (-18.0)^2 = 324.0 \\ \hline & & \text{Sum: } 828.0 \\ \hline \end{array} \][/tex]
So, the sum of the squares of the differences between each data value and the mean is [tex]\(828.0\)[/tex].
### (d) Standard deviation of the data set
The standard deviation provides a measure of the spread of the data values. Since we are dealing with a population (not a sample), we use the following formula for standard deviation [tex]\(\sigma\)[/tex]:
[tex]\[ \sigma = \sqrt{\frac{\sum (x - \bar{x})^2}{N}} \][/tex]
Where [tex]\(N\)[/tex] is the number of data values (in this case, 6).
Given that the sum from Part (c) is [tex]\(828.0\)[/tex]:
[tex]\[ \sigma = \sqrt{\frac{828.0}{6}} = \sqrt{138.0} \approx 11.7473 \][/tex]
Therefore, the standard deviation of the data set is approximately [tex]\(11.7473\)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.