At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find [tex]\(\frac{dy}{dx}\)[/tex] for [tex]\(y = x^3 \tan(2x)\)[/tex], we must use both the product rule and the chain rule in differentiation. Here’s a detailed step-by-step solution:
1. Identify the functions:
- Let's set [tex]\(u = x^3\)[/tex]
- Let [tex]\(v = \tan(2x)\)[/tex]
So [tex]\(y = u \cdot v\)[/tex].
2. Apply the product rule:
- The product rule states that [tex]\(\frac{d}{dx} [u \cdot v] = u \cdot \frac{dv}{dx} + v \cdot \frac{du}{dx}\)[/tex].
3. Differentiate [tex]\(u = x^3\)[/tex]:
- [tex]\(\frac{du}{dx} = 3x^2\)[/tex]
4. Differentiate [tex]\(v = \tan(2x)\)[/tex] using the chain rule:
- Start by differentiating [tex]\(\tan(2x)\)[/tex] with respect to [tex]\(2x\)[/tex], giving [tex]\(\sec^2(2x)\)[/tex].
- Then differentiate [tex]\(2x\)[/tex] with respect to [tex]\(x\)[/tex], giving [tex]\(2\)[/tex].
- Hence, [tex]\(\frac{d}{dx}[\tan(2x)] = 2 \sec^2(2x)\)[/tex].
5. Combine these results using the product rule:
- The derivative [tex]\(\frac{dy}{dx}\)[/tex] will be given by:
[tex]\[ \frac{dy}{dx} = u \cdot \frac{dv}{dx} + v \cdot \frac{du}{dx} \][/tex]
- Substitute [tex]\(u\)[/tex], [tex]\(\frac{du}{dx}\)[/tex], [tex]\(v\)[/tex], and [tex]\(\frac{dv}{dx}\)[/tex]:
[tex]\[ \frac{dy}{dx} = x^3 \cdot 2\sec^2(2x) + \tan(2x) \cdot 3x^2 \][/tex]
6. Simplify:
- This becomes:
[tex]\[ \frac{dy}{dx} = 2x^3 \sec^2(2x) + 3x^2 \tan(2x) \][/tex]
Comparing this with the given options, the correct answer is:
a) [tex]\(3 x^2 \tan 2 x + 2 x^3 \sec^2 2 x\)[/tex]
1. Identify the functions:
- Let's set [tex]\(u = x^3\)[/tex]
- Let [tex]\(v = \tan(2x)\)[/tex]
So [tex]\(y = u \cdot v\)[/tex].
2. Apply the product rule:
- The product rule states that [tex]\(\frac{d}{dx} [u \cdot v] = u \cdot \frac{dv}{dx} + v \cdot \frac{du}{dx}\)[/tex].
3. Differentiate [tex]\(u = x^3\)[/tex]:
- [tex]\(\frac{du}{dx} = 3x^2\)[/tex]
4. Differentiate [tex]\(v = \tan(2x)\)[/tex] using the chain rule:
- Start by differentiating [tex]\(\tan(2x)\)[/tex] with respect to [tex]\(2x\)[/tex], giving [tex]\(\sec^2(2x)\)[/tex].
- Then differentiate [tex]\(2x\)[/tex] with respect to [tex]\(x\)[/tex], giving [tex]\(2\)[/tex].
- Hence, [tex]\(\frac{d}{dx}[\tan(2x)] = 2 \sec^2(2x)\)[/tex].
5. Combine these results using the product rule:
- The derivative [tex]\(\frac{dy}{dx}\)[/tex] will be given by:
[tex]\[ \frac{dy}{dx} = u \cdot \frac{dv}{dx} + v \cdot \frac{du}{dx} \][/tex]
- Substitute [tex]\(u\)[/tex], [tex]\(\frac{du}{dx}\)[/tex], [tex]\(v\)[/tex], and [tex]\(\frac{dv}{dx}\)[/tex]:
[tex]\[ \frac{dy}{dx} = x^3 \cdot 2\sec^2(2x) + \tan(2x) \cdot 3x^2 \][/tex]
6. Simplify:
- This becomes:
[tex]\[ \frac{dy}{dx} = 2x^3 \sec^2(2x) + 3x^2 \tan(2x) \][/tex]
Comparing this with the given options, the correct answer is:
a) [tex]\(3 x^2 \tan 2 x + 2 x^3 \sec^2 2 x\)[/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.