Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find [tex]\(\frac{dy}{dx}\)[/tex] for [tex]\(y = x^3 \tan(2x)\)[/tex], we must use both the product rule and the chain rule in differentiation. Here’s a detailed step-by-step solution:
1. Identify the functions:
- Let's set [tex]\(u = x^3\)[/tex]
- Let [tex]\(v = \tan(2x)\)[/tex]
So [tex]\(y = u \cdot v\)[/tex].
2. Apply the product rule:
- The product rule states that [tex]\(\frac{d}{dx} [u \cdot v] = u \cdot \frac{dv}{dx} + v \cdot \frac{du}{dx}\)[/tex].
3. Differentiate [tex]\(u = x^3\)[/tex]:
- [tex]\(\frac{du}{dx} = 3x^2\)[/tex]
4. Differentiate [tex]\(v = \tan(2x)\)[/tex] using the chain rule:
- Start by differentiating [tex]\(\tan(2x)\)[/tex] with respect to [tex]\(2x\)[/tex], giving [tex]\(\sec^2(2x)\)[/tex].
- Then differentiate [tex]\(2x\)[/tex] with respect to [tex]\(x\)[/tex], giving [tex]\(2\)[/tex].
- Hence, [tex]\(\frac{d}{dx}[\tan(2x)] = 2 \sec^2(2x)\)[/tex].
5. Combine these results using the product rule:
- The derivative [tex]\(\frac{dy}{dx}\)[/tex] will be given by:
[tex]\[ \frac{dy}{dx} = u \cdot \frac{dv}{dx} + v \cdot \frac{du}{dx} \][/tex]
- Substitute [tex]\(u\)[/tex], [tex]\(\frac{du}{dx}\)[/tex], [tex]\(v\)[/tex], and [tex]\(\frac{dv}{dx}\)[/tex]:
[tex]\[ \frac{dy}{dx} = x^3 \cdot 2\sec^2(2x) + \tan(2x) \cdot 3x^2 \][/tex]
6. Simplify:
- This becomes:
[tex]\[ \frac{dy}{dx} = 2x^3 \sec^2(2x) + 3x^2 \tan(2x) \][/tex]
Comparing this with the given options, the correct answer is:
a) [tex]\(3 x^2 \tan 2 x + 2 x^3 \sec^2 2 x\)[/tex]
1. Identify the functions:
- Let's set [tex]\(u = x^3\)[/tex]
- Let [tex]\(v = \tan(2x)\)[/tex]
So [tex]\(y = u \cdot v\)[/tex].
2. Apply the product rule:
- The product rule states that [tex]\(\frac{d}{dx} [u \cdot v] = u \cdot \frac{dv}{dx} + v \cdot \frac{du}{dx}\)[/tex].
3. Differentiate [tex]\(u = x^3\)[/tex]:
- [tex]\(\frac{du}{dx} = 3x^2\)[/tex]
4. Differentiate [tex]\(v = \tan(2x)\)[/tex] using the chain rule:
- Start by differentiating [tex]\(\tan(2x)\)[/tex] with respect to [tex]\(2x\)[/tex], giving [tex]\(\sec^2(2x)\)[/tex].
- Then differentiate [tex]\(2x\)[/tex] with respect to [tex]\(x\)[/tex], giving [tex]\(2\)[/tex].
- Hence, [tex]\(\frac{d}{dx}[\tan(2x)] = 2 \sec^2(2x)\)[/tex].
5. Combine these results using the product rule:
- The derivative [tex]\(\frac{dy}{dx}\)[/tex] will be given by:
[tex]\[ \frac{dy}{dx} = u \cdot \frac{dv}{dx} + v \cdot \frac{du}{dx} \][/tex]
- Substitute [tex]\(u\)[/tex], [tex]\(\frac{du}{dx}\)[/tex], [tex]\(v\)[/tex], and [tex]\(\frac{dv}{dx}\)[/tex]:
[tex]\[ \frac{dy}{dx} = x^3 \cdot 2\sec^2(2x) + \tan(2x) \cdot 3x^2 \][/tex]
6. Simplify:
- This becomes:
[tex]\[ \frac{dy}{dx} = 2x^3 \sec^2(2x) + 3x^2 \tan(2x) \][/tex]
Comparing this with the given options, the correct answer is:
a) [tex]\(3 x^2 \tan 2 x + 2 x^3 \sec^2 2 x\)[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.