Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find [tex]\(\frac{dy}{dx}\)[/tex] for [tex]\(y = x^3 \tan(2x)\)[/tex], we must use both the product rule and the chain rule in differentiation. Here’s a detailed step-by-step solution:
1. Identify the functions:
- Let's set [tex]\(u = x^3\)[/tex]
- Let [tex]\(v = \tan(2x)\)[/tex]
So [tex]\(y = u \cdot v\)[/tex].
2. Apply the product rule:
- The product rule states that [tex]\(\frac{d}{dx} [u \cdot v] = u \cdot \frac{dv}{dx} + v \cdot \frac{du}{dx}\)[/tex].
3. Differentiate [tex]\(u = x^3\)[/tex]:
- [tex]\(\frac{du}{dx} = 3x^2\)[/tex]
4. Differentiate [tex]\(v = \tan(2x)\)[/tex] using the chain rule:
- Start by differentiating [tex]\(\tan(2x)\)[/tex] with respect to [tex]\(2x\)[/tex], giving [tex]\(\sec^2(2x)\)[/tex].
- Then differentiate [tex]\(2x\)[/tex] with respect to [tex]\(x\)[/tex], giving [tex]\(2\)[/tex].
- Hence, [tex]\(\frac{d}{dx}[\tan(2x)] = 2 \sec^2(2x)\)[/tex].
5. Combine these results using the product rule:
- The derivative [tex]\(\frac{dy}{dx}\)[/tex] will be given by:
[tex]\[ \frac{dy}{dx} = u \cdot \frac{dv}{dx} + v \cdot \frac{du}{dx} \][/tex]
- Substitute [tex]\(u\)[/tex], [tex]\(\frac{du}{dx}\)[/tex], [tex]\(v\)[/tex], and [tex]\(\frac{dv}{dx}\)[/tex]:
[tex]\[ \frac{dy}{dx} = x^3 \cdot 2\sec^2(2x) + \tan(2x) \cdot 3x^2 \][/tex]
6. Simplify:
- This becomes:
[tex]\[ \frac{dy}{dx} = 2x^3 \sec^2(2x) + 3x^2 \tan(2x) \][/tex]
Comparing this with the given options, the correct answer is:
a) [tex]\(3 x^2 \tan 2 x + 2 x^3 \sec^2 2 x\)[/tex]
1. Identify the functions:
- Let's set [tex]\(u = x^3\)[/tex]
- Let [tex]\(v = \tan(2x)\)[/tex]
So [tex]\(y = u \cdot v\)[/tex].
2. Apply the product rule:
- The product rule states that [tex]\(\frac{d}{dx} [u \cdot v] = u \cdot \frac{dv}{dx} + v \cdot \frac{du}{dx}\)[/tex].
3. Differentiate [tex]\(u = x^3\)[/tex]:
- [tex]\(\frac{du}{dx} = 3x^2\)[/tex]
4. Differentiate [tex]\(v = \tan(2x)\)[/tex] using the chain rule:
- Start by differentiating [tex]\(\tan(2x)\)[/tex] with respect to [tex]\(2x\)[/tex], giving [tex]\(\sec^2(2x)\)[/tex].
- Then differentiate [tex]\(2x\)[/tex] with respect to [tex]\(x\)[/tex], giving [tex]\(2\)[/tex].
- Hence, [tex]\(\frac{d}{dx}[\tan(2x)] = 2 \sec^2(2x)\)[/tex].
5. Combine these results using the product rule:
- The derivative [tex]\(\frac{dy}{dx}\)[/tex] will be given by:
[tex]\[ \frac{dy}{dx} = u \cdot \frac{dv}{dx} + v \cdot \frac{du}{dx} \][/tex]
- Substitute [tex]\(u\)[/tex], [tex]\(\frac{du}{dx}\)[/tex], [tex]\(v\)[/tex], and [tex]\(\frac{dv}{dx}\)[/tex]:
[tex]\[ \frac{dy}{dx} = x^3 \cdot 2\sec^2(2x) + \tan(2x) \cdot 3x^2 \][/tex]
6. Simplify:
- This becomes:
[tex]\[ \frac{dy}{dx} = 2x^3 \sec^2(2x) + 3x^2 \tan(2x) \][/tex]
Comparing this with the given options, the correct answer is:
a) [tex]\(3 x^2 \tan 2 x + 2 x^3 \sec^2 2 x\)[/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.