Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Sure, let's solve the given equations step by step and then find the value of the expression [tex]\( A + B \times C \)[/tex].
1. Solving for [tex]\( A \)[/tex]:
The equation is:
[tex]\[ A + A = 30 \][/tex]
Simplifying this, we get:
[tex]\[ 2A = 30 \][/tex]
Dividing both sides by 2:
[tex]\[ A = \frac{30}{2} = 15.0 \][/tex]
2. Solving for [tex]\( B \)[/tex]:
The equation is:
[tex]\[ B + B = 20 \][/tex]
Simplifying this, we get:
[tex]\[ 2B = 20 \][/tex]
Dividing both sides by 2:
[tex]\[ B = \frac{20}{2} = 10.0 \][/tex]
3. Solving for [tex]\( C \)[/tex]:
The equation is:
[tex]\[ C + C = 8 \][/tex]
Simplifying this, we get:
[tex]\[ 2C = 8 \][/tex]
Dividing both sides by 2:
[tex]\[ C = \frac{8}{2} = 4.0 \][/tex]
4. Calculating the expression [tex]\( A + B \times C \)[/tex]:
Now that we have the values of [tex]\( A \)[/tex], [tex]\( B \)[/tex], and [tex]\( C \)[/tex]:
[tex]\[ A = 15.0, \quad B = 10.0, \quad C = 4.0 \][/tex]
We can substitute these values into the expression [tex]\( A + B \times C \)[/tex]:
[tex]\[ A + B \times C = 15.0 + 10.0 \times 4.0 \][/tex]
First, we calculate [tex]\( B \times C \)[/tex]:
[tex]\[ 10.0 \times 4.0 = 40.0 \][/tex]
Then, we add [tex]\( A \)[/tex]:
[tex]\[ 15.0 + 40.0 = 55.0 \][/tex]
So, the value of [tex]\( A + B \times C \)[/tex] is [tex]\( 55.0 \)[/tex].
1. Solving for [tex]\( A \)[/tex]:
The equation is:
[tex]\[ A + A = 30 \][/tex]
Simplifying this, we get:
[tex]\[ 2A = 30 \][/tex]
Dividing both sides by 2:
[tex]\[ A = \frac{30}{2} = 15.0 \][/tex]
2. Solving for [tex]\( B \)[/tex]:
The equation is:
[tex]\[ B + B = 20 \][/tex]
Simplifying this, we get:
[tex]\[ 2B = 20 \][/tex]
Dividing both sides by 2:
[tex]\[ B = \frac{20}{2} = 10.0 \][/tex]
3. Solving for [tex]\( C \)[/tex]:
The equation is:
[tex]\[ C + C = 8 \][/tex]
Simplifying this, we get:
[tex]\[ 2C = 8 \][/tex]
Dividing both sides by 2:
[tex]\[ C = \frac{8}{2} = 4.0 \][/tex]
4. Calculating the expression [tex]\( A + B \times C \)[/tex]:
Now that we have the values of [tex]\( A \)[/tex], [tex]\( B \)[/tex], and [tex]\( C \)[/tex]:
[tex]\[ A = 15.0, \quad B = 10.0, \quad C = 4.0 \][/tex]
We can substitute these values into the expression [tex]\( A + B \times C \)[/tex]:
[tex]\[ A + B \times C = 15.0 + 10.0 \times 4.0 \][/tex]
First, we calculate [tex]\( B \times C \)[/tex]:
[tex]\[ 10.0 \times 4.0 = 40.0 \][/tex]
Then, we add [tex]\( A \)[/tex]:
[tex]\[ 15.0 + 40.0 = 55.0 \][/tex]
So, the value of [tex]\( A + B \times C \)[/tex] is [tex]\( 55.0 \)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.