Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the quotient and remainder using synthetic division for the polynomial [tex]\( P(x) = x^3 + 9x^2 - 8 \)[/tex] with the divisor [tex]\( D(x) = x + 9 \)[/tex], and to evaluate [tex]\( P(-9) \)[/tex] using the remainder theorem, follow these steps:
### Synthetic Division
1. Identify the root of the divisor. Since [tex]\( D(x) = x + 9 \)[/tex], the root of the divisor is [tex]\( -9 \)[/tex].
2. Write down the coefficients of the polynomial [tex]\( P(x) \)[/tex] in descending order of power. For [tex]\( x^3 + 9x^2 - 8 \)[/tex], the coefficients are [tex]\( [1, 9, 0, -8] \)[/tex].
3. Perform synthetic division.
- Write down the root of the divisor, which is [tex]\( -9 \)[/tex].
- Begin by bringing down the leading coefficient, which is [tex]\( 1 \)[/tex].
The process:
- Multiply the root [tex]\( -9 \)[/tex] by the leading coefficient [tex]\( 1 \)[/tex] and add it to the next coefficient.
- Continue this process for each coefficient in the polynomial.
Steps:
- Start with [tex]\( 1 \)[/tex] (the leading coefficient).
- [tex]\( 1 \times (-9) = -9 \)[/tex]. Add this to the next coefficient [tex]\( 9 \)[/tex]: [tex]\( 9 + (-9) = 0 \)[/tex].
- [tex]\( 0 \times (-9) = 0 \)[/tex]. Add this to the next coefficient [tex]\( 0 \)[/tex]: [tex]\( 0 + 0 = 0 \)[/tex].
- [tex]\( 0 \times (-9) = 0 \)[/tex]. Add this to the next coefficient [tex]\( -8 \)[/tex]: [tex]\( -8 + 0 = -8 \)[/tex].
The results of these operations give us the coefficients of the quotient and the remainder.
4. The quotient and remainder.
- The quotient coefficients are obtained from the results of the synthetic division excluding the last value.
- The last value is the remainder.
Thus, we have:
- Quotient coefficients: [tex]\( [1, 0, 0] \)[/tex], which represents [tex]\( x^2 + 0x + 0 \)[/tex] or simply [tex]\( x^2 \)[/tex].
- Remainder: [tex]\( -8 \)[/tex].
### Use the Remainder Theorem to Evaluate [tex]\( P(-9) \)[/tex]
According to the Remainder Theorem, the value of [tex]\( P(-9) \)[/tex] is equal to the remainder obtained from the synthetic division.
Thus, [tex]\( P(-9) = -8 \)[/tex].
### Summary
- The quotient is [tex]\( x^2 \)[/tex].
- The remainder is [tex]\( -8 \)[/tex].
- [tex]\( P(-9) = -8 \)[/tex].
### Synthetic Division
1. Identify the root of the divisor. Since [tex]\( D(x) = x + 9 \)[/tex], the root of the divisor is [tex]\( -9 \)[/tex].
2. Write down the coefficients of the polynomial [tex]\( P(x) \)[/tex] in descending order of power. For [tex]\( x^3 + 9x^2 - 8 \)[/tex], the coefficients are [tex]\( [1, 9, 0, -8] \)[/tex].
3. Perform synthetic division.
- Write down the root of the divisor, which is [tex]\( -9 \)[/tex].
- Begin by bringing down the leading coefficient, which is [tex]\( 1 \)[/tex].
The process:
- Multiply the root [tex]\( -9 \)[/tex] by the leading coefficient [tex]\( 1 \)[/tex] and add it to the next coefficient.
- Continue this process for each coefficient in the polynomial.
Steps:
- Start with [tex]\( 1 \)[/tex] (the leading coefficient).
- [tex]\( 1 \times (-9) = -9 \)[/tex]. Add this to the next coefficient [tex]\( 9 \)[/tex]: [tex]\( 9 + (-9) = 0 \)[/tex].
- [tex]\( 0 \times (-9) = 0 \)[/tex]. Add this to the next coefficient [tex]\( 0 \)[/tex]: [tex]\( 0 + 0 = 0 \)[/tex].
- [tex]\( 0 \times (-9) = 0 \)[/tex]. Add this to the next coefficient [tex]\( -8 \)[/tex]: [tex]\( -8 + 0 = -8 \)[/tex].
The results of these operations give us the coefficients of the quotient and the remainder.
4. The quotient and remainder.
- The quotient coefficients are obtained from the results of the synthetic division excluding the last value.
- The last value is the remainder.
Thus, we have:
- Quotient coefficients: [tex]\( [1, 0, 0] \)[/tex], which represents [tex]\( x^2 + 0x + 0 \)[/tex] or simply [tex]\( x^2 \)[/tex].
- Remainder: [tex]\( -8 \)[/tex].
### Use the Remainder Theorem to Evaluate [tex]\( P(-9) \)[/tex]
According to the Remainder Theorem, the value of [tex]\( P(-9) \)[/tex] is equal to the remainder obtained from the synthetic division.
Thus, [tex]\( P(-9) = -8 \)[/tex].
### Summary
- The quotient is [tex]\( x^2 \)[/tex].
- The remainder is [tex]\( -8 \)[/tex].
- [tex]\( P(-9) = -8 \)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.