Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Simplify the following expression and classify the resulting polynomial.

[tex]\[ 4x(x+1) - (3x-8)(x+4) \][/tex]

A. Quadratic binomial
B. Quadratic monomial
C. Linear binomial
D. Quadratic trinomial

Sagot :

To simplify the expression and classify the resulting polynomial, we start with the given expression:

[tex]\[ 4x(x+1) - (3x - 8)(x + 4) \][/tex]

### Step 1: Expand each term individually

First, expand [tex]\(4x(x + 1)\)[/tex]:

[tex]\[ 4x(x + 1) = 4x^2 + 4x \][/tex]

Next, expand [tex]\((3x - 8)(x + 4)\)[/tex]:

[tex]\[ (3x - 8)(x + 4) = 3x(x + 4) - 8(x + 4) \][/tex]

Expanding each part separately:
[tex]\[ 3x(x + 4) = 3x^2 + 12x \][/tex]
[tex]\[ -8(x + 4) = -8x - 32 \][/tex]

Combining the expanded terms of [tex]\((3x - 8)(x + 4)\)[/tex]:

[tex]\[ 3x^2 + 12x - 8x - 32 = 3x^2 + 4x - 32 \][/tex]

### Step 2: Combine all parts

Now we combine the expanded expressions:

[tex]\[ 4x^2 + 4x - (3x^2 + 4x - 32) \][/tex]

### Step 3: Distribute the subtraction

[tex]\[ 4x^2 + 4x - 3x^2 - 4x + 32 \][/tex]

### Step 4: Combine like terms

Combine the [tex]\(x^2\)[/tex] terms:

[tex]\[ 4x^2 - 3x^2 = x^2 \][/tex]

Combine the [tex]\(x\)[/tex] terms:

[tex]\[ 4x - 4x = 0 \][/tex]

And then add the constant term:

[tex]\[ x^2 + 32 \][/tex]

The simplified expression is:

[tex]\[ x^2 + 32 \][/tex]

### Step 5: Classify the polynomial

Let's classify the polynomial [tex]\(x^2 + 32\)[/tex]:

- The degree of the polynomial is 2 because the highest power of [tex]\(x\)[/tex] is [tex]\(x^2\)[/tex].
- There are two terms in this polynomial: [tex]\(x^2\)[/tex] and 32.

A polynomial of degree two with two terms is known as a quadratic binomial. Therefore, the simplified polynomial, [tex]\(x^2 + 32\)[/tex], is:

### Answer
A. quadratic binomial
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.