At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To analyze the changes in stock prices and use Chebyshev's theorem to provide bounds on the data, follow these steps:
### (a) Calculating the Range for 84% Confidence Interval
First, determine the boundaries for the stock price increase where at least 84% of the data will lie based on Chebyshev's theorem.
The mean relative increase in stock price is [tex]\( \mu = 0.73\% \)[/tex], and the standard deviation is [tex]\( \sigma = 0.20\% \)[/tex].
Chebyshev's theorem states that for any distribution, at least [tex]\( \frac{1 - \frac{1}{k^2}}{100} \)[/tex]% of the data lies within [tex]\( k \)[/tex] standard deviations of the mean, where [tex]\( k \)[/tex] is a positive number.
To find [tex]\( k \)[/tex] for an 84% confidence interval:
[tex]\[ 1 - \frac{1}{k^2} = 0.84 \][/tex]
[tex]\[ \frac{1}{k^2} = 1 - 0.84 = 0.16 \][/tex]
[tex]\[ k^2 = \frac{1}{0.16} = 6.25 \][/tex]
[tex]\[ k = \sqrt{6.25} = 2.5 \][/tex]
Hence, we need to find the boundaries that lie within [tex]\( 2.5 \)[/tex] standard deviations of the mean:
[tex]\[ \text{Lower bound} = \mu - k \sigma = 0.73\% - 2.5 \times 0.20\% \][/tex]
[tex]\[ \text{Lower bound} = 0.73\% - 0.50\% = 0.23\% \][/tex]
[tex]\[ \text{Upper bound} = \mu + k \sigma = 0.73\% + 2.5 \times 0.20\% \][/tex]
[tex]\[ \text{Upper bound} = 0.73\% + 0.50\% = 1.23\% \][/tex]
Thus, according to Chebyshev's theorem, at least 84% of the relative increases in stock price lie between [tex]\( 0.23\% \)[/tex] and [tex]\( 1.23\% \)[/tex].
Statement (a):
According to Chebyshev's theorem, at least 84% of the relative increases in stock price lie between [tex]\( \mathbf{0.23\%} \)[/tex] and [tex]\( \mathbf{1.23\%} \)[/tex].
### (b) Percentage of Relative Increases in Given Interval
To determine the percentage of relative increases in stock price that lie between [tex]\( 0.33\% \)[/tex] and [tex]\( 1.13\% \)[/tex]:
Here, we need to find [tex]\( k \)[/tex] such that the interval [tex]\( [0.33\%, 1.13\%] \)[/tex] is within [tex]\( k \)[/tex] standard deviations of the mean.
First, calculate [tex]\( k \)[/tex]:
[tex]\[ \text{Upper bound} = 1.13\% \quad \text{and} \quad \text{Lower bound} = 0.33\% \][/tex]
[tex]\[ \text{Width from mean to upper bound} = 1.13\% - 0.73\% = 0.40\% \][/tex]
[tex]\[ k = \frac{0.40\%}{0.20\%} = 2 \][/tex]
Using Chebyshev's theorem:
[tex]\[ 1 - \frac{1}{k^2} = 1 - \frac{1}{2^2} = 1 - \frac{1}{4} = 0.75 \][/tex]
Thus, at least 75% of the relative increases in stock price lie within the interval from [tex]\( 0.33\% \)[/tex] to [tex]\( 1.13\% \)[/tex].
Statement (b):
According to Chebyshev's theorem, at least [tex]\( \mathbf{75\%} \)[/tex] of the relative increases in stock price lie between [tex]\( 0.33\% \)[/tex] and [tex]\( 1.13\% \)[/tex].
By understanding and applying Chebyshev's theorem, we can conclude that:
- At least 84% of the increases lie between 0.23% and 1.23%.
- At least 75% of the increases lie between 0.33% and 1.13%.
### (a) Calculating the Range for 84% Confidence Interval
First, determine the boundaries for the stock price increase where at least 84% of the data will lie based on Chebyshev's theorem.
The mean relative increase in stock price is [tex]\( \mu = 0.73\% \)[/tex], and the standard deviation is [tex]\( \sigma = 0.20\% \)[/tex].
Chebyshev's theorem states that for any distribution, at least [tex]\( \frac{1 - \frac{1}{k^2}}{100} \)[/tex]% of the data lies within [tex]\( k \)[/tex] standard deviations of the mean, where [tex]\( k \)[/tex] is a positive number.
To find [tex]\( k \)[/tex] for an 84% confidence interval:
[tex]\[ 1 - \frac{1}{k^2} = 0.84 \][/tex]
[tex]\[ \frac{1}{k^2} = 1 - 0.84 = 0.16 \][/tex]
[tex]\[ k^2 = \frac{1}{0.16} = 6.25 \][/tex]
[tex]\[ k = \sqrt{6.25} = 2.5 \][/tex]
Hence, we need to find the boundaries that lie within [tex]\( 2.5 \)[/tex] standard deviations of the mean:
[tex]\[ \text{Lower bound} = \mu - k \sigma = 0.73\% - 2.5 \times 0.20\% \][/tex]
[tex]\[ \text{Lower bound} = 0.73\% - 0.50\% = 0.23\% \][/tex]
[tex]\[ \text{Upper bound} = \mu + k \sigma = 0.73\% + 2.5 \times 0.20\% \][/tex]
[tex]\[ \text{Upper bound} = 0.73\% + 0.50\% = 1.23\% \][/tex]
Thus, according to Chebyshev's theorem, at least 84% of the relative increases in stock price lie between [tex]\( 0.23\% \)[/tex] and [tex]\( 1.23\% \)[/tex].
Statement (a):
According to Chebyshev's theorem, at least 84% of the relative increases in stock price lie between [tex]\( \mathbf{0.23\%} \)[/tex] and [tex]\( \mathbf{1.23\%} \)[/tex].
### (b) Percentage of Relative Increases in Given Interval
To determine the percentage of relative increases in stock price that lie between [tex]\( 0.33\% \)[/tex] and [tex]\( 1.13\% \)[/tex]:
Here, we need to find [tex]\( k \)[/tex] such that the interval [tex]\( [0.33\%, 1.13\%] \)[/tex] is within [tex]\( k \)[/tex] standard deviations of the mean.
First, calculate [tex]\( k \)[/tex]:
[tex]\[ \text{Upper bound} = 1.13\% \quad \text{and} \quad \text{Lower bound} = 0.33\% \][/tex]
[tex]\[ \text{Width from mean to upper bound} = 1.13\% - 0.73\% = 0.40\% \][/tex]
[tex]\[ k = \frac{0.40\%}{0.20\%} = 2 \][/tex]
Using Chebyshev's theorem:
[tex]\[ 1 - \frac{1}{k^2} = 1 - \frac{1}{2^2} = 1 - \frac{1}{4} = 0.75 \][/tex]
Thus, at least 75% of the relative increases in stock price lie within the interval from [tex]\( 0.33\% \)[/tex] to [tex]\( 1.13\% \)[/tex].
Statement (b):
According to Chebyshev's theorem, at least [tex]\( \mathbf{75\%} \)[/tex] of the relative increases in stock price lie between [tex]\( 0.33\% \)[/tex] and [tex]\( 1.13\% \)[/tex].
By understanding and applying Chebyshev's theorem, we can conclude that:
- At least 84% of the increases lie between 0.23% and 1.23%.
- At least 75% of the increases lie between 0.33% and 1.13%.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.