Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To analyze the changes in stock prices and use Chebyshev's theorem to provide bounds on the data, follow these steps:
### (a) Calculating the Range for 84% Confidence Interval
First, determine the boundaries for the stock price increase where at least 84% of the data will lie based on Chebyshev's theorem.
The mean relative increase in stock price is [tex]\( \mu = 0.73\% \)[/tex], and the standard deviation is [tex]\( \sigma = 0.20\% \)[/tex].
Chebyshev's theorem states that for any distribution, at least [tex]\( \frac{1 - \frac{1}{k^2}}{100} \)[/tex]% of the data lies within [tex]\( k \)[/tex] standard deviations of the mean, where [tex]\( k \)[/tex] is a positive number.
To find [tex]\( k \)[/tex] for an 84% confidence interval:
[tex]\[ 1 - \frac{1}{k^2} = 0.84 \][/tex]
[tex]\[ \frac{1}{k^2} = 1 - 0.84 = 0.16 \][/tex]
[tex]\[ k^2 = \frac{1}{0.16} = 6.25 \][/tex]
[tex]\[ k = \sqrt{6.25} = 2.5 \][/tex]
Hence, we need to find the boundaries that lie within [tex]\( 2.5 \)[/tex] standard deviations of the mean:
[tex]\[ \text{Lower bound} = \mu - k \sigma = 0.73\% - 2.5 \times 0.20\% \][/tex]
[tex]\[ \text{Lower bound} = 0.73\% - 0.50\% = 0.23\% \][/tex]
[tex]\[ \text{Upper bound} = \mu + k \sigma = 0.73\% + 2.5 \times 0.20\% \][/tex]
[tex]\[ \text{Upper bound} = 0.73\% + 0.50\% = 1.23\% \][/tex]
Thus, according to Chebyshev's theorem, at least 84% of the relative increases in stock price lie between [tex]\( 0.23\% \)[/tex] and [tex]\( 1.23\% \)[/tex].
Statement (a):
According to Chebyshev's theorem, at least 84% of the relative increases in stock price lie between [tex]\( \mathbf{0.23\%} \)[/tex] and [tex]\( \mathbf{1.23\%} \)[/tex].
### (b) Percentage of Relative Increases in Given Interval
To determine the percentage of relative increases in stock price that lie between [tex]\( 0.33\% \)[/tex] and [tex]\( 1.13\% \)[/tex]:
Here, we need to find [tex]\( k \)[/tex] such that the interval [tex]\( [0.33\%, 1.13\%] \)[/tex] is within [tex]\( k \)[/tex] standard deviations of the mean.
First, calculate [tex]\( k \)[/tex]:
[tex]\[ \text{Upper bound} = 1.13\% \quad \text{and} \quad \text{Lower bound} = 0.33\% \][/tex]
[tex]\[ \text{Width from mean to upper bound} = 1.13\% - 0.73\% = 0.40\% \][/tex]
[tex]\[ k = \frac{0.40\%}{0.20\%} = 2 \][/tex]
Using Chebyshev's theorem:
[tex]\[ 1 - \frac{1}{k^2} = 1 - \frac{1}{2^2} = 1 - \frac{1}{4} = 0.75 \][/tex]
Thus, at least 75% of the relative increases in stock price lie within the interval from [tex]\( 0.33\% \)[/tex] to [tex]\( 1.13\% \)[/tex].
Statement (b):
According to Chebyshev's theorem, at least [tex]\( \mathbf{75\%} \)[/tex] of the relative increases in stock price lie between [tex]\( 0.33\% \)[/tex] and [tex]\( 1.13\% \)[/tex].
By understanding and applying Chebyshev's theorem, we can conclude that:
- At least 84% of the increases lie between 0.23% and 1.23%.
- At least 75% of the increases lie between 0.33% and 1.13%.
### (a) Calculating the Range for 84% Confidence Interval
First, determine the boundaries for the stock price increase where at least 84% of the data will lie based on Chebyshev's theorem.
The mean relative increase in stock price is [tex]\( \mu = 0.73\% \)[/tex], and the standard deviation is [tex]\( \sigma = 0.20\% \)[/tex].
Chebyshev's theorem states that for any distribution, at least [tex]\( \frac{1 - \frac{1}{k^2}}{100} \)[/tex]% of the data lies within [tex]\( k \)[/tex] standard deviations of the mean, where [tex]\( k \)[/tex] is a positive number.
To find [tex]\( k \)[/tex] for an 84% confidence interval:
[tex]\[ 1 - \frac{1}{k^2} = 0.84 \][/tex]
[tex]\[ \frac{1}{k^2} = 1 - 0.84 = 0.16 \][/tex]
[tex]\[ k^2 = \frac{1}{0.16} = 6.25 \][/tex]
[tex]\[ k = \sqrt{6.25} = 2.5 \][/tex]
Hence, we need to find the boundaries that lie within [tex]\( 2.5 \)[/tex] standard deviations of the mean:
[tex]\[ \text{Lower bound} = \mu - k \sigma = 0.73\% - 2.5 \times 0.20\% \][/tex]
[tex]\[ \text{Lower bound} = 0.73\% - 0.50\% = 0.23\% \][/tex]
[tex]\[ \text{Upper bound} = \mu + k \sigma = 0.73\% + 2.5 \times 0.20\% \][/tex]
[tex]\[ \text{Upper bound} = 0.73\% + 0.50\% = 1.23\% \][/tex]
Thus, according to Chebyshev's theorem, at least 84% of the relative increases in stock price lie between [tex]\( 0.23\% \)[/tex] and [tex]\( 1.23\% \)[/tex].
Statement (a):
According to Chebyshev's theorem, at least 84% of the relative increases in stock price lie between [tex]\( \mathbf{0.23\%} \)[/tex] and [tex]\( \mathbf{1.23\%} \)[/tex].
### (b) Percentage of Relative Increases in Given Interval
To determine the percentage of relative increases in stock price that lie between [tex]\( 0.33\% \)[/tex] and [tex]\( 1.13\% \)[/tex]:
Here, we need to find [tex]\( k \)[/tex] such that the interval [tex]\( [0.33\%, 1.13\%] \)[/tex] is within [tex]\( k \)[/tex] standard deviations of the mean.
First, calculate [tex]\( k \)[/tex]:
[tex]\[ \text{Upper bound} = 1.13\% \quad \text{and} \quad \text{Lower bound} = 0.33\% \][/tex]
[tex]\[ \text{Width from mean to upper bound} = 1.13\% - 0.73\% = 0.40\% \][/tex]
[tex]\[ k = \frac{0.40\%}{0.20\%} = 2 \][/tex]
Using Chebyshev's theorem:
[tex]\[ 1 - \frac{1}{k^2} = 1 - \frac{1}{2^2} = 1 - \frac{1}{4} = 0.75 \][/tex]
Thus, at least 75% of the relative increases in stock price lie within the interval from [tex]\( 0.33\% \)[/tex] to [tex]\( 1.13\% \)[/tex].
Statement (b):
According to Chebyshev's theorem, at least [tex]\( \mathbf{75\%} \)[/tex] of the relative increases in stock price lie between [tex]\( 0.33\% \)[/tex] and [tex]\( 1.13\% \)[/tex].
By understanding and applying Chebyshev's theorem, we can conclude that:
- At least 84% of the increases lie between 0.23% and 1.23%.
- At least 75% of the increases lie between 0.33% and 1.13%.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.