Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the enthalpy change [tex]\((\Delta H)\)[/tex] for the reaction:
[tex]\[ \text{SO}_{2(g)} + \frac{1}{2} \text{O}_{2(g)} \rightarrow \text{SO}_{3(g)} \][/tex]
using Hess's law, we can utilize the given reactions:
1.
[tex]\[ \text{S}_{(s)} + \text{O}_{2(g)} \rightarrow \text{SO}_{2(g)} \quad \Delta H = -296.8 \ \text{kJ} \][/tex]
2.
[tex]\[ 2\text{S}_{(s)} + 3\text{O}_{2(g)} \rightarrow 2\text{SO}_{3(g)} \quad \Delta H = -795.45 \ \text{kJ} \][/tex]
Let's proceed step by step:
### Step 1: Understand the Goal
We need to find the [tex]\(\Delta H\)[/tex] for the reaction:
[tex]\[ \text{SO}_{2(g)} + \frac{1}{2} \text{O}_{2(g)} \rightarrow \text{SO}_{3(g)} \][/tex]
### Step 2: Manipulate the Given Equations
Equation 1:
[tex]\[ \text{S}_{(s)} + \text{O}_{2(g)} \rightarrow \text{SO}_{2(g)} \quad \Delta H = -296.8 \ \text{kJ} \][/tex]
Equation 2 (let's express it in a way that involves only one mole of [tex]\(\text{SO}_{3(g)}\)[/tex]):
[tex]\[ 2\text{S}_{(s)} + 3\text{O}_{2(g)} \rightarrow 2\text{SO}_{3(g)} \][/tex]
Divide Equation 2 by 2 to get it per mole of [tex]\(\text{SO}_{3(g)}\)[/tex]:
[tex]\[ \text{S}_{(s)} + \frac{3}{2}\text{O}_{2(g)} \rightarrow \text{SO}_{3(g)} \][/tex]
Since we divided the reaction by 2, we must also divide [tex]\(\Delta H\)[/tex] by 2:
[tex]\[ \Delta H = \frac{-795.45 \ \text{kJ}}{2} = -397.725 \ \text{kJ} \][/tex]
### Step 3: Construct the Target Equation
Now, we need to write the target reaction in terms of the modified equations:
[tex]\[ \text{SO}_{2(g)} + \frac{1}{2}\text{O}_{2(g)} \rightarrow \text{SO}_{3(g)} \][/tex]
Notice that:
- From the modified second equation, we have:
[tex]\[ \text{S}_{(s)} + \frac{3}{2}\text{O}_{2(g)} \rightarrow \text{SO}_{3(g)} \][/tex]
- And from the first equation, we know:
[tex]\[ \text{S}_{(s)} + \text{O}_{2(g)} \rightarrow \text{SO}_{2(g)} \][/tex]
By reversing and subtracting the first equation from the modified second equation, we get our target reaction:
[tex]\[ (\text{S}_{(s)} + \frac{3}{2} \text{O}_{2(g)} \rightarrow \text{SO}_{3(g)}) - (\text{S}_{(s)} + \text{O}_{2(g)} \rightarrow \text{SO}_{2(g)}) \][/tex]
This simplifies to:
[tex]\[ \text{SO}_{2(g)} + \frac{1}{2} \text{O}_{2(g)} \rightarrow \text{SO}_{3(g)} \][/tex]
### Step 4: Calculate the Enthalpy Change
The enthalpy change for the reaction will be:
[tex]\[ \Delta H_{\text{reaction}} = -397.725 \ \text{kJ} - (-296.8 \ \text{kJ}) \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -397.725 \ \text{kJ} + 296.8 \ \text{kJ} \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -100.925 \ \text{kJ} \][/tex]
### Conclusion
The enthalpy change for the reaction:
[tex]\[ \text{SO}_{2(g)} + \frac{1}{2}\text{O}_{2(g)} \rightarrow \text{SO}_{3(g)} \][/tex]
is [tex]\(\Delta H = -100.925 \ \text{kJ}\)[/tex].
[tex]\[ \text{SO}_{2(g)} + \frac{1}{2} \text{O}_{2(g)} \rightarrow \text{SO}_{3(g)} \][/tex]
using Hess's law, we can utilize the given reactions:
1.
[tex]\[ \text{S}_{(s)} + \text{O}_{2(g)} \rightarrow \text{SO}_{2(g)} \quad \Delta H = -296.8 \ \text{kJ} \][/tex]
2.
[tex]\[ 2\text{S}_{(s)} + 3\text{O}_{2(g)} \rightarrow 2\text{SO}_{3(g)} \quad \Delta H = -795.45 \ \text{kJ} \][/tex]
Let's proceed step by step:
### Step 1: Understand the Goal
We need to find the [tex]\(\Delta H\)[/tex] for the reaction:
[tex]\[ \text{SO}_{2(g)} + \frac{1}{2} \text{O}_{2(g)} \rightarrow \text{SO}_{3(g)} \][/tex]
### Step 2: Manipulate the Given Equations
Equation 1:
[tex]\[ \text{S}_{(s)} + \text{O}_{2(g)} \rightarrow \text{SO}_{2(g)} \quad \Delta H = -296.8 \ \text{kJ} \][/tex]
Equation 2 (let's express it in a way that involves only one mole of [tex]\(\text{SO}_{3(g)}\)[/tex]):
[tex]\[ 2\text{S}_{(s)} + 3\text{O}_{2(g)} \rightarrow 2\text{SO}_{3(g)} \][/tex]
Divide Equation 2 by 2 to get it per mole of [tex]\(\text{SO}_{3(g)}\)[/tex]:
[tex]\[ \text{S}_{(s)} + \frac{3}{2}\text{O}_{2(g)} \rightarrow \text{SO}_{3(g)} \][/tex]
Since we divided the reaction by 2, we must also divide [tex]\(\Delta H\)[/tex] by 2:
[tex]\[ \Delta H = \frac{-795.45 \ \text{kJ}}{2} = -397.725 \ \text{kJ} \][/tex]
### Step 3: Construct the Target Equation
Now, we need to write the target reaction in terms of the modified equations:
[tex]\[ \text{SO}_{2(g)} + \frac{1}{2}\text{O}_{2(g)} \rightarrow \text{SO}_{3(g)} \][/tex]
Notice that:
- From the modified second equation, we have:
[tex]\[ \text{S}_{(s)} + \frac{3}{2}\text{O}_{2(g)} \rightarrow \text{SO}_{3(g)} \][/tex]
- And from the first equation, we know:
[tex]\[ \text{S}_{(s)} + \text{O}_{2(g)} \rightarrow \text{SO}_{2(g)} \][/tex]
By reversing and subtracting the first equation from the modified second equation, we get our target reaction:
[tex]\[ (\text{S}_{(s)} + \frac{3}{2} \text{O}_{2(g)} \rightarrow \text{SO}_{3(g)}) - (\text{S}_{(s)} + \text{O}_{2(g)} \rightarrow \text{SO}_{2(g)}) \][/tex]
This simplifies to:
[tex]\[ \text{SO}_{2(g)} + \frac{1}{2} \text{O}_{2(g)} \rightarrow \text{SO}_{3(g)} \][/tex]
### Step 4: Calculate the Enthalpy Change
The enthalpy change for the reaction will be:
[tex]\[ \Delta H_{\text{reaction}} = -397.725 \ \text{kJ} - (-296.8 \ \text{kJ}) \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -397.725 \ \text{kJ} + 296.8 \ \text{kJ} \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -100.925 \ \text{kJ} \][/tex]
### Conclusion
The enthalpy change for the reaction:
[tex]\[ \text{SO}_{2(g)} + \frac{1}{2}\text{O}_{2(g)} \rightarrow \text{SO}_{3(g)} \][/tex]
is [tex]\(\Delta H = -100.925 \ \text{kJ}\)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.